982 resultados para Power generator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports the development and performance evaluation of prototypes of biogas-fuelled stationary power generators in the range of 1 kW. Strategies to achieve high engine efficiency namely pulsed manifold injection, electronic throttle control and dual spark plugs, have been incorporated in the prototype. A complete closed-loop control of the engine operation to maintain a steady engine speed of 3000 rpm (+/- 5%) across the entire load range while maintaining an optimum fuel-air equivalence ratio is made possible by an electronic control unit (ECU) controlling the injection duration, ignition timing and throttle position. This study specifically focuses on the response of the generator to transient loads, and the overall efficiency obtained. The results obtained from testing the prototype have been found to be satisfactory and show that biogas power generators for low power applications can be made efficient (overall efficiency of 19% at electrical load of 640 W) using the strategies of biogas fuel injection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PCDD/F emissions from three light-duty diesel vehicles–two vans and a passenger car–have been measured in on-road conditions. We propose a new methodology for small vehicles: a sample of exhaust gas is collected by means of equipment based on United States Environmental Protection Agency (U.S. EPA) method 23A for stationary stack emissions. The concentrations of O2, CO, CO2, NO, NO2 and SO2 have also been measured. Six tests were carried out at 90-100 km/h on a route 100 km long. Two additional tests were done during the first 10 minutes and the following 60 minutes of the run to assess the effect of the engine temperature on PCDD/F emissions. The emission factors obtained for the vans varied from 1800 to 8400 pg I-TEQ/Nm3 for a 2004 model year van and 490-580 pg I-TEQ/Nm3 for a 2006 model year van. Regarding the passenger car, one run was done in the presence of a catalyst and another without, obtaining emission factors (330-880 pg I-TEQ/Nm3) comparable to those of the modern van. Two other tests were carried out on a power generator leading to emission factors ranging from 31 to 78 pg I-TEQ/Nm3. All the results are discussed and compared with literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A DSP implementation of Space Vector PWM (SVPWM) using constant V/Hz control for the open winding doubly-fed generator is proposed. This control of SVPWM modulation mode and open winding structure combination has the high voltage utilization ratio, greatly improves the control precision of the system, and reduces the stator winding output current distortion rate, though the complexity of the system is increased. This paper describes the basic principle of SVPWM and discusses the particularity of SVPWM waveform generated by hybrid vector under the condition of open winding. This method is applied to a state of doubly-fed wind power generator. The experimental verification shows that this control method can make the output voltage amplitude of the doubly-fed induction generator be 380V and the frequency be 50Hz by using of TMS32028335 chip based on constant V/Hz control of symmetric SVPWM modulation wave.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel open-winding brushless doubly-fed generator (BDFG) system with two two-level bidirectional converters is proposed. This topology is equivalent to a three-level bidirectional converter connected to the typical BDFG, but solves the unbalanced-voltage-division problem of DC capacitor in the three-level converter, and has lower converter capacity, more flexible control mode, and better fault-tolerant ability. The direct power control (DPC) based on the twelve sections is adopted to implement the power tracking of the open-winding BDFG system, which is compared with the typical BDFG DPC system based on the six and twelve sections to verify the advantages of the proposed scheme.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With the ever-increasing penetration level of wind power, the impacts of wind power on the power system are becoming more and more significant. Hence, it is necessary to systematically examine its impacts on the small signal stability and transient stability in order to find out countermeasures. As such, a comprehensive study is carried out to compare the dynamic performances of power system respectively with three widely-used power generators. First, the dynamic models are described for three types of wind power generators, i. e. the squirrel cage induction generator (SCIG), doubly fed induction generator (DFIG) and permanent magnet generator (PMG). Then, the impacts of these wind power generators on the small signal stability and transient stability are compared with that of a substituted synchronous generator (SG) in the WSCC three-machine nine-bus system by the eigenvalue analysis and dynamic time-domain simulations. Simulation results show that the impacts of different wind power generators are different under small and large disturbances.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Herein, we demonstrate that a flexible, air-permeable, thermoelectric (TE) power generator can be prepared by applying a TE polymer (e.g. poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)) coated commercial fabric and subsequently by linking the coated strips with a conductive connection (e.g. using fine metal wires). The poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) coated fabric shows very stable TE properties from 300 K to 390 K. The fabric device can generate a TE voltage output (V) of 4.3 mV at a temperature difference (ΔT) of 75.2 K. The potential for using fabric TE devices to harvest body temperature energy has been discussed. Fabric-based TE devices may be useful for the development of new power generating clothing and self-powered wearable electronics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A szerző egy, a szennyezőanyag-kibocsátás európai kereskedelmi rendszerében megfelelésre kötelezett gázturbinás erőmű szén-dioxid-kibocsátását modellezi négy termékre (völgy- és csúcsidőszaki áramár, gázár, kibocsátási kvóta) vonatkozó reálopciós modell segítségével. A profitmaximalizáló erőmű csak abban az esetben termel és szennyez, ha a megtermelt áramon realizálható fedezete pozitív. A jövőbeli időszak összesített szén-dioxid-kibocsátása megfeleltethető európai típusú bináris különbözetopciók összegének. A modell keretein belül a szén-dioxid-kibocsátás várható értékét és sűrűségfüggvényét becsülhetjük, az utóbbi segítségével a szén-dioxid-kibocsátási pozíció kockáztatott értékét határozhatjuk meg, amely az erőmű számára előírt megfelelési kötelezettség teljesítésének adott konfidenciaszint melletti költségét jelenti. A sztochasztikus modellben az alaptermékek geometriai Ornstein-Uhlenbeck-folyamatot követnek. Ezt illesztette a szerző a német energiatőzsdéről származó publikus piaci adatokra. A szimulációs modellre támaszkodva megvizsgálta, hogy a különböző technológiai és piaci tényezők ceteris paribus megváltozása milyen hatással van a megfelelés költségére, a kockáztatott értékére. ______ The carbon-dioxide emissions of an EU Emissions Trading System participant, gas-fuelled power generator are modelled by using real options for four underlying instruments (peak and off-peak electricity, gas, emission quota). This profit-maximizing power plant operates and emits pollution only if its profit (spread) on energy produced is positive. The future emissions can be estimated by a sum of European binary-spread options. Based on the real-option model, the expected value of emissions and its probability-density function can be deducted. Also calculable is the Value at Risk of emission quota position, which gives the cost of compliance at a given confidence level. To model the prices of the four underlying instruments, the geometric Ornstein-Uhlenbeck process is supposed and matched to public available price data from EEX. Based on the simulation model, the effects of various technological and market factors are analysed for the emissions level and the cost of compliance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A tanulmány arra keresi a választ, hogy a megújuló alapú áramtermelők támogatása csökkentőleg hathat- e a villamos energia nagykereskedelmi és kiskereskedelmi árára. Ez utóbbi tartalmazza a megújulók támogatásának összegét is. Számos elméleti cikk rámutatott arra, hogy nemcsak a nagykereskedelmi árak, hanem a kiskereskedelmi villamosenergia-árak is csökkenhetnek a drágább, megújuló alapú áramtermelők támogatása révén. A tanulmány során egy villamosenergia-piacokat szimuláló modell segítségével modellezi a szerző, hogy a különböző mennyiségű szélerőművi és fotovoltaikus kapacitás támogatása hogyan hat a magyarországi nagykereskedelmi és kiskereskedelmi árakra. _____ Impact of the Hungarian renewable based power generation on electricity price The aim of this paper is to answer the question whether the support of renewable power generation could decrease the wholesale and retail electricity prices. The latter one includes the support of renewables. Several studies point out that not only the wholesale, but the retail electricity prices could decrease when supporting the more expensive, renewable power generation. A model, which simulates the electricity markets, is used in order to analyse the impact of different level of wind and photo voltaic power generator support fee on Hungarian wholesale and retail electricity prices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the critical problems currently being faced by agriculture industry in developing nations is the alarming rate of groundwater depletion. Irrigation accounts for over 70% of the total groundwater withdrawn everyday. Compounding this issue is the use of polluting diesel generators to pump groundwater for irrigation. This has made irrigation not only the biggest consumer of groundwater but also one of the major contributors to green house gases. The aim of this thesis is to present a solution to the energy-water nexus. To make agriculture less dependent on fossil fuels, the use of a solar-powered Stirling engine as the power generator for on-farm energy needs is discussed. The Stirling cycle is revisited and practical and ideal Stirling cycles are compared. Based on agricultural needs and financial constraints faced by farmers in developing countries, the use of a Fresnel lens as a solar-concentrator and a Beta-type Stirling engine unit is suggested for sustainable power generation on the farms. To reduce the groundwater consumption and to make irrigation more sustainable, the conceptual idea of using a Stirling engine in drip irrigation is presented. To tackle the shortage of over 37 million tonnes of cold-storage in India, the idea of cost-effective solar-powered on-farm cold storage unit is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho é apresentado o desenvolvimento e os resultados da implementação e testes em campo de um estabilizador de sistema de potência (ESP) projetado com técnica de controle digital para fins de amortecimento de modos de oscilação eletromecânica observáveis em sinais de potência elétrica medido em uma unidade hidro-geradora, de 350 MVA da Usina Hidrelétrica de Tucuruí. É apresentada e aplicada a metodologia de identificação de modelos paramétricos lineares do tipo auto regressivo com entradas exógenas (ARX), para estimação de modelos com capacidade de capturar a informação relevante (amortecimento e freqüência natural) dos modos eletromecânicos dominantes do sistema. De posse do modelo paramétrico ARX, é efetuada então a síntese da lei de controle digital amortecedor para o ESP, através da técnica de deslocamento radial dos pólos da função de transferência de malha fechada. Para a síntese da lei de controle digital, utilizou-se uma estrutura canônica do tipo RST. Para os testes de campo, a lei de controle amortecedor do ESP digital foi codificada em linguagem C e embarcada em um protótipo cujo hardware é baseado em microcontrolador modelo DSPIC 30F3014, o qual incorpora um grande número de periféricos para aquisição e comunicação de dados. Para avaliar o desempenho do ESP digital desenvolvido, testes experimentais foram realizados em uma unidade geradora de 350 MVA da casa de força número 1, da UHE de Tucuruí. O estabilizador desenvolvido atua através da modulação da referência de tensão do regulador automático de tensão da respectiva unidade geradora, de acordo com as oscilações observadas através da medida de potência elétrica no estator do gerador. Os resultados de testes de campo mostraram um excelente desempenho do ESP digital no amortecimento de um modo eletromecânico, de freqüência natural de aproximadamente 1,7 Hz, observado nos teste de campo realizado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work described in this thesis had two objectives. The first objective was to develop a physically based computational model that could be used to predict the electronic conductivity, Seebeck coefficient, and thermal conductivity of Pb1-xSnxTe alloys over the 400 K to 700 K temperature as a function of Sn content and doping level. The second objective was to determine how the secondary phase inclusions observed in Pb1-xSnxTe alloys made by consolidating mechanically alloyed elemental powders impact the ability of the material to harvest waste heat and generate electricity in the 400 K to 700 K temperature range. The motivation for this work was that though the promise of this alloy as an unusually efficient thermoelectric power generator material in the 400 K to 700 K range had been demonstrated in the literature, methods to reproducibly control and subsequently optimize the materials thermoelectric figure of merit remain elusive. Mechanical alloying, though not typically used to fabricate these alloys, is a potential method for cost-effectively engineering these properties. Given that there are deviations from crystalline perfection in mechanically alloyed material such as secondary phase inclusions, the question arises as to whether these defects are detrimental to thermoelectric function or alternatively, whether they enhance thermoelectric function of the alloy. The hypothesis formed at the onset of this work was that the small secondary phase SnO2 inclusions observed to be present in the mechanically alloyed Pb1-xSnxTe would increase the thermoelectric figure of merit of the material over the temperature range of interest. It was proposed that the increase in the figure of merit would arise because the inclusions in the material would not reduce the electrical conductivity to as great an extent as the thermal conductivity. If this were to be true, then the experimentally measured electronic conductivity in mechanically alloyed Pb1-xSnxTe alloys that have these inclusions would not be less than that expected in alloys without these inclusions while the portion of the thermal conductivity that is not due to charge carriers (the lattice thermal conductivity) would be less than what would be expected from alloys that do not have these inclusions. Furthermore, it would be possible to approximate the observed changes in the electrical and thermal transport properties using existing physical models for the scattering of electrons and phonons by small inclusions. The approach taken to investigate this hypothesis was to first experimentally characterize the mobile carrier concentration at room temperature along with the extent and type of secondary phase inclusions present in a series of three mechanically alloyed Pb1-xSnxTe alloys with different Sn content. Second, the physically based computational model was developed. This model was used to determine what the electronic conductivity, Seebeck coefficient, total thermal conductivity, and the portion of the thermal conductivity not due to mobile charge carriers would be in these particular Pb1-xSnxTe alloys if there were to be no secondary phase inclusions. Third, the electronic conductivity, Seebeck coefficient and total thermal conductivity was experimentally measured for these three alloys with inclusions present at elevated temperatures. The model predictions for electrical conductivity and Seebeck coefficient were directly compared to the experimental elevated temperature electrical transport measurements. The computational model was then used to extract the lattice thermal conductivity from the experimentally measured total thermal conductivity. This lattice thermal conductivity was then compared to what would be expected from the alloys in the absence of secondary phase inclusions. Secondary phase inclusions were determined by X-ray diffraction analysis to be present in all three alloys to a varying extent. The inclusions were found not to significantly degrade electrical conductivity at temperatures above ~ 400 K in these alloys, though they do dramatically impact electronic mobility at room temperature. It is shown that, at temperatures above ~ 400 K, electrons are scattered predominantly by optical and acoustical phonons rather than by an alloy scattering mechanism or the inclusions. The experimental electrical conductivity and Seebeck coefficient data at elevated temperatures were found to be within ~ 10 % of what would be expected for material without inclusions. The inclusions were not found to reduce the lattice thermal conductivity at elevated temperatures. The experimentally measured thermal conductivity data was found to be consistent with the lattice thermal conductivity that would arise due to two scattering processes: Phonon phonon scattering (Umklapp scattering) and the scattering of phonons by the disorder induced by the formation of a PbTe-SnTe solid solution (alloy scattering). As opposed to the case in electrical transport, the alloy scattering mechanism in thermal transport is shown to be a significant contributor to the total thermal resistance. An estimation of the extent to which the mean free time between phonon scattering events would be reduced due to the presence of the inclusions is consistent with the above analysis of the experimental data. The first important result of this work was the development of an experimentally validated, physically based computational model that can be used to predict the electronic conductivity, Seebeck coefficient, and thermal conductivity of Pb1-xSnxTe alloys over the 400 K to 700 K temperature as a function of Sn content and doping level. This model will be critical in future work as a tool to first determine what the highest thermoelectric figure of merit one can expect from this alloy system at a given temperature and, second, as a tool to determine the optimum Sn content and doping level to achieve this figure of merit. The second important result of this work is the determination that the secondary phase inclusions that were observed to be present in the Pb1-xSnxTe made by mechanical alloying do not keep the material from having the same electrical and thermal transport that would be expected from “perfect" single crystal material at elevated temperatures. The analytical approach described in this work will be critical in future investigations to predict how changing the size, type, and volume fraction of secondary phase inclusions can be used to impact thermal and electrical transport in this materials system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On 22nd February '96, the space mission STS 75 started ,from the NASA facilities at Cape Canaveral. Such a mission consists in the launch of the shuttle Columbia in order to carry out two experiments in the space: the TSS 1R (Tethered Satellite Sistem 1 Refliight) and the USMP (United States Microgravity Payload). The TSS 1R is a replica of a similar mission TSS 1 '92. The TSS space programme is a bilateral scientific cooperation between the USA space agency NASA (National Aeronautics and Space Agency) and the ASI (Italian Space Agency. The TSS 1R system consists on the shuttle Columbia which deploys, up-ward, by means a conducting tether 20 km long, a spherical satellite (1.5 mt diameter) containing scientific instrumentation. This system, orbiting at about 300 km from the Earth's surface, represents, presently, the largest experimental space structure, Due to its dimensions, flexibility and conducting properties of the tether, the system interacts, in a quite complex manner, wih the earth magnetic field and the ionospheric plasma, in a way that the total system behaves as an electromagnetic radiating antenna as well as an electric power generator. Twelve scientific experiments have been assessed by US and Italian scientists in order to study the electro dynamic behaviour of the structure orbiting in the ionos phere. Two experiments have been prepared in the attempt to receive on the Earth's surface possible electromagnetic events radiated by the TSS 1R. The project EMET (Electro Magnetic Emissions from Tether),USA and the project OESEE (Observations on the Earth Surface of Electromagnetic Emissions) Italy, consist in a coordinated programme of passive detection of such possible EM emissions. This detection will supply the verification of some thoretical hypotheses on the electrodynamic interactions between the orbiting system, the Earth's magnetic field and the ionospheric plasma with two principal aims as the technological assesment of the system concept as well as a deeper knowledge of the ionosphere properties for future space applications. A theoretical model that keeps the peculiarities of tether emissionsis being developed for signal prediction at constant tether current. As a step previous to the calculation of the expected ground signal , the Alfven-wave signature left by the tether far back in the ionosphere has been determined. The scientific expectations from the combined effort to measure the entity of those perturbations will be outlined taking in to account the used ground track sensor systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The addition of hydrogen gas as an alternative fuel source has been widely used, as well reported in scientific literature. Today, several experiments are underway for the use of hydrogen generators (electrolysers) demand for motor vehicles. In all these products their ads manufacturers claim that this provides a reduction of fuel consumption, reduces the emission levels of toxic gas by the discharge and improves engine life. This research analyzes the physical structure of engine components using electrolysis on demand. To this end, a stationary system was fitted with a power generator of electricity, drum roller and adapted two electrolyzers: a dry cell and wet cell other. In steps observation were consumption analyzes in four work load ranges and observing the piston engine, which has been cut and analyzed by Optical Microscopy (OM), Scanning Electron Microscopy and Dispersive Energy (SEM-EDS), X – Ray Diffraction (XRD) and Confocal Microscopy, the stationary system in each step. The results showed a considerable reduction in fuel consumption and a high corrosion in the original factory piston constituted of aluminum-silicon alloy. As corrosion barrier was made a plasma nitriding in the piston head, which proved resistant to attack by hydrogen, although it has presented evidence also, of having been attacked. It is concluded that the automotive electrolysers can be a good choice in terms of consumption and reducing toxic gas emissions, but the material of the combustion chambers of vehicles must be prepared for this purpose.