902 resultados para Power Electronics
Resumo:
In this website, you can virtually attend all lectures, tutorials, computer Labs and quizzes and also access to lecture notes.
Resumo:
Major advances in power electronics during recent years have prompted considerable interest within the traction community. The capability of new technologies to reduce the AC railway networks' effect on power quality and improve their supply efficiency is expected to significantly decrease the cost of electric rail supply systems. Of particular interest are Static Frequency Converter (SFC), Rail Power Conditioner (RPC), High Voltage Direct Current (HVDC) and Energy Storage Systems (ESS) solutions. Substantial impacts on future feasibility of railway electrification are anticipated. Aurizon, Australia's largest heavy haul railway operator, has recently commissioned the world's first 50Hz/50Hz SFC installation and is currently investigating SFC, RPC, HVDC and ESS solutions. This paper presents a summary of current and emerging technologies with a particular focus on the potential techno-economic benefits.
Resumo:
The educational kit was developed for power electronics and drives. The need and purpose of this kit is to train engineers with current technology of digital control in power electronics. The DSP is the natural choice as it is able to perform high speed calculations required in power electronics. The educational kit consists of a DSP platform using TI DSP TMS320C50 starter kit, an inverter and an induction machine-dc machine set. A set of experiments have been prepared so that DSP programming can be learned easily in a smooth fashion. Here the application presented is open loop V/F control of three phase induction using sine pulse width modulation technique.
Resumo:
Power electronic modules distinguish themselves from other modules by their high power operation. These modules are used extensively in high power application markets such as aerospace, automotive, industrial and traction and drives. This paper discusses typical packaging technologies for power electronics modules. It also discusses the latest results from a UK research project investigating the physics-of-failure approach to reliability analysis and predictions for power modules. An integrated design enviroment for incorporating of affects of uncertainty into the design environment was outlined.
Resumo:
This paper discusses the reliability of power electronics modules. The approach taken combines numerical modeling techniques with experimentation and accelerated testing to identify failure modes and mechanisms for the power module structure and most importantly the root cause of a potential failure. The paper details results for two types of failure (i) wire bond fatigue and (ii) substrate delamination. Finite element method modeling techniques have been used to predict the stress distribution within the module structures. A response surface optimisation approach has been employed to enable the optimal design and parameter sensitivity to be determined. The response surface is used by a Monte Carlo method to determine the effects of uncertainty in the design.
Resumo:
A numerical modeling method for the prediction of the lifetime of solder joints of relatively large solder area under cyclic thermal-mechanical loading conditions has been developed. The method is based on the Miner's linear damage accumulation rule and the properties of the accumulated plastic strain in front of the crack in large area solder joint. The nonlinear distribution of the damage indicator in the solder joints have been taken into account. The method has been used to calculate the lifetime of the solder interconnect in a power module under mixed cyclic loading conditions found in railway traction control applications. The results show that the solder thickness is a parameter that has a strong influence on the damage and therefore the lifetime of the solder joint while the substrate width and the thickness of the baseplate are much less important for the lifetime