994 resultados para Power Deposition
Resumo:
Radial and axial distributions of magnetic fields in a low-frequency (∼460 kHz)inductively coupled plasmasource with two internal crossed planar rf current sheets are reported. The internal antenna configuration comprises two orthogonal sets of eight alternately reconnected parallel and equidistant copper litz wires in quartz enclosures and generates three magnetic (H z, H r, and H φ) and two electric (E φ and E r) field components at the fundamental frequency. The measurements have been performed in rarefied and dense plasmas generated in the electrostatic(E) and electromagnetic (H)discharge modes using two miniature magnetic probes. It is shown that the radial uniformity and depth of the rf power deposition can be improved as compared with conventional sources of inductively coupled plasmas with external flat spiral (“pancake”) antennas. Relatively deeper rf power deposition in the plasma source results in more uniform profiles of the optical emission intensity, which indicates on the improvement of the plasma uniformity over large chamber volumes. The results of the numerical modeling of the radial magnetic field profiles are found in a reasonable agreement with the experimental data.
Resumo:
Using a refined two-dimensional hybrid-model with self-consistent microwave absorption, we have investigated the change of plasma parameters such as plasma density and ionization rate with the operating conditions. The dependence of the ion current density and ion energy and angle distribution function at the substrate surface vs. the radial position, pressure and microwave power were discussed. Results of our simulation can be compared qualitatively with many experimental measurements.
Resumo:
A time averaged two-dimensional fluid model including an electromagnetic module with self-consistent power deposition was developed to simulate the transport of a low pressure radio frequency inductively coupled plasma source. Comparsions with experiment and previous simulation results show, that the fluid model is feasible in a certain range of gas pressure. In addition, the effects of gas pressure and power input have been discussed.
Resumo:
Time- and space-resolved magnetic (B-dot) probe measurements in combination with measurements of the plasma parameters were carried out to investigate the relationship between the formation and propagation of helicon modes and the radio frequency (rf) power deposition in the core of a helicon plasma. The Poynting flux and the absorbed power density are deduced from the measured rf magnetic field distribution in amplitude and phase. Special attention is devoted to the helicon absorption under linear and nonlinear conditions. The present investigations are attached to recent observations in which the nonlinear nature of the helicon wave absorption has been demonstrated by showing that the strong absorption of helicon waves is correlated with parametric excitation of electrostatic fluctuations.
Resumo:
Control and diagnostics of low-frequency (∼ 500 kHz) inductively coupled plasmas for chemical vapor deposition (CVD) of nano-composite carbon nitride-based films is reported. Relation between the discharge control parameters, plasma electron energy distribution/probability functions (EEDF/EEPF), and elemental composition in the deposited C-N based thin films is investigated. Langmuir probe technique is employed to monitor the plasma density and potential, effective electron temperature, and EEDFs/EEPFs in Ar + N2 + CH4 discharges. It is revealed that varying RF power and gas composition/pressure one can engineer the EEDFs/EEPFs to enhance the desired plasma-chemical gas-phase reactions thus controlling the film chemical structure. Auxiliary diagnostic tools for study of the RF power deposition, plasma composition, stability, and optical emission are discussed as well.
Resumo:
The results of comprehensive experimental studies of the operation, stability, and plasma parameters of the low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal oscillating rf current are reported. The rf plasma is generated by using a custom-designed configuration of the internal rf coil that comprises two perpendicular sets of eight currents in each direction. Various diagnostic tools, such as magnetic probes, optical emission spectroscopy, and an rf-compensated Langmuir probe were used to investigate the electromagnetic, optical, and global properties of the argon plasma in wide ranges of the applied rf power and gas feedstock pressure. It is found that the uniformity of the electromagnetic field inside the plasma reactor is improved as compared to the conventional sources of inductively coupled plasmas with the external flat coil configuration. A reasonable agreement between the experimental data and computed electromagnetic field topography inside the chamber is reported. The Langmuir probe measurements reveal that the spatial profiles of the electron density, the effective electron temperature, plasma potential, and electron energy distribution/probability functions feature a high degree of the radial and axial uniformity and a weak azimuthal dependence, which is consistent with the earlier theoretical predictions. As the input rf power increases, the azimuthal dependence of the global plasma parameters vanishes. The obtained results demonstrate that by introducing the internal oscillated rf currents one can noticeably improve the uniformity of electromagnetic field topography, rf power deposition, and the plasma density in the reactor.
Resumo:
A global electromagnetic model of an inductively coupled plasma sustained by an internal oscillating current sheet in a cylindrical metal vessel is developed. The electromagnetic field structure, profiles of the rf power transferred to the plasma electrons, electron/ion number density, and working points of the discharge are studied, by invoking particle and power balance. It is revealed that the internal rf current with spatially invariable phase significantly improves the radial uniformity of the electromagnetic fields and the power density in the chamber as compared with conventional plasma sources with external flat spiral inductive coils. This configuration offers the possibility of controlling the rf power deposition in the azimuthal direction.
Resumo:
A global, or averaged, model for complex low-pressure argon discharge plasmas containing dust grains is presented. The model consists of particle and power balance equations taking into account power loss on the dust grains and the discharge wall. The electron energy distribution is determined by a Boltzmann equation. The effects of the dust and the external conditions, such as the input power and neutral gas pressure, on the electron energy distribution, the electron temperature, the electron and ion number densities, and the dust charge are investigated. It is found that the dust subsystem can strongly affect the stationary state of the discharge by dynamically modifying the electron energy distribution, the electron temperature, the creation and loss of the plasma particles, as well as the power deposition. In particular, the power loss to the dust grains can take up a significant portion of the input power, often even exceeding the loss to the wall.
Resumo:
The present paper describes a systematic study of argon plasmas in a bell-jar inductively coupled plasma (ICP) source over the range of pressure 5-20 mtorr and power input 0.2-0.5 kW, Experimental measurements as well as results of numerical simulations are presented. The models used in the study include the well-known global balance model (or the global model) as well as a detailed two-dimensional (2-D) fluid model of the system, The global model is able to provide reasonably accurate values for the global electron temperature and plasma density, The 2-D model provides spatial distributions of various plasma parameters that make it possible to compare with data measured in the experiments, The experimental measurements were obtained using a tuned Langmuir double-probe technique to reduce the RF interference and obtain the light versus current (I-V) characteristics of the probe. Time-averaged electron temperature and plasma density were measured for various combinations of pressure and applied RF power, The predictions of the 2-D model were found to be in good qualitative agreement with measured data, It was found that the electron temperature distribution T-e was more or less uniform in the chamber, It was also seen that the electron temperature depends primarily on pressure, but is almost independent of the power input, except in the very low-pressure regime. The plasma density goes up almost linearly with the power input.
Resumo:
In the present paper, argon (Ar) plasmas in a bell jar inductively coupled plasma (ICP) source are systematically studied over pressures from 5 to 20 mtorr and power inputs from 0.2 to 0.5 kW. In this study, both a two-dimensional (2-D) fluid model simulation and global model calculation are compared, The 2-D fluid model simulation with a self-consistent power deposition is developed to describe the Ar plasma behavior as well as predict the plasma parameter distributions, Finally, a quantitative comparison between the global model and the fluid model is made to test their validity.
Resumo:
An analysis of the time-dependent resistive voltage and power deposition during the breakdown phase of pseudo-spark is presented. The voltage and current were measured by specially designed low-inductance capacitive voltage divider and current measuring resistor. The measured waveforms of voltage and current are digitized and processed by a computer program to remove the inductive component, so as to obtain resistive voltage and power deposition. The influence of pressure, cathode geometry and charging voltage of storage capacitors on the electrical properties in the breakdown phase are investigated. The results suggest that the breakdown phase of pseudo-spark consists of three stages. The first stage is mainly hollow cathode discharge. In the second stage, field-enhanced thermionic emission takes place, resulting in a fast voltage drop and sharp rise of discharge current. The third stage of discharge depends simply on the parameters of the discharge circuit.
Resumo:
The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohy drodynamic peeling-ballooning modes become unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement be- tween the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs sup- pressed by external magnetic perturbations, and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation on- sets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, providing a mechanism to suppress both the peeling and ballooning modes.
Resumo:
Power deposition in the head of a user wearing metal-framed spectacles was calculated with a 450 MHz personal radio transmitting in close proximity. Peak tissue SAR in the head depended on lens shape whether circular half-rim or rectangular with 70 and 174% increases, respectively, compared to the spectacle-free case. However, localised screening occurred with square frames, with a 40% reduction of peak SAR in the eye closest to the antenna.
Resumo:
L’objectif de ce mémoire de maîtrise est de caractériser la distribution axiale des plasmas tubulaires à la pression atmosphérique créés et entretenus par une onde électromagnétique de surface ainsi que d’explorer le potentiel de ces sources pour la synthèse de matériaux et de nanomatériaux. Un précédent travail de thèse, qui avait pour objectif de déterminer les mécanismes à l’origine de la contraction radiale du plasma créé dans des gaz rares, a mis en lumière un phénomène jusque-là inconnu dans les plasmas d’onde de surface (POS). En effet, la distribution axiale varie différemment selon la puissance incidente ce qui constitue une différence majeure par rapport aux plasmas à pression réduite. Dans ce contexte, nous avons réalisé une étude paramétrique des POS à la pression atmosphérique dans l’Ar. À partir de nos mesures de densité électronique, de température d’excitation et de densité d’atomes d’Ar dans un niveau métastable (Ar 3P2), résolues axialement, nous avons conclu que le comportement axial de l’intensité lumineuse avec la puissance n’est pas lié à un changement de la cinétique de la décharge (qui est dépendante de la température des électrons et de la densité d’atomes d’Ar métastables), mais plutôt à une distribution anormale de dissipation de puissance dans le plasma (reliée à la densité d’électrons). Plus précisément, nos résultats suggèrent que ce dépôt anormal de puissance provient d’une réflexion de l’onde dans le fort gradient de densité de charges en fin de colonne, un effet plus marqué pour de faibles longueurs de colonnes à plasma. Ensuite, nous avons effectué une étude spectroscopique du plasma en présence de précurseurs organiques, en particulier le HMDSO pour la synthèse de matériaux organosiliciés et l’IPT pour la synthèse de matériaux organotitaniques. Les POS à la PA sont caractérisés par des densités de charges très élevées (>10^13 cm^-3), permettant ainsi d’atteindre des degrés de dissociation des précurseurs nettement plus élevés que ceux d'autres plasmas froids à la pression atmosphérique comme les décharges à barrière diélectrique. Dans de tels cas, les matériaux synthétisés prennent la forme de nanopoudres organiques de taille inférieure à 100 nm. En présence de faibles quantités d’oxygène dans le plasma, nous obtenons plutôt des nanopoudres à base d’oxyde de silicium (HMDSO) ou à base de titanate de silicium (IPT), avec très peu de carbone.
Resumo:
The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence has been used in many applications of magnetic resonance imaging (MRI) and low-resolution NMR (LRNMR) spectroscopy. Recently. CPMG was used in online LRNMR measurements that use long RF pulse trains, causing an increase in probe temperature and, therefore, tuning and matching maladjustments. To minimize this problem, the use of a low-power CPMG sequence based on low refocusing pulse flip angles (LRFA) was studied experimentally and theoretically. This approach has been used in several MRI protocols to reduce incident RF power and meet the specific absorption rate. The results for CPMG with LRFA of 3 pi/4 (CPMG(135)), pi/2 (CPMG(90)) and pi/4 (CPMG(45)) were compared with conventional CPMG with refocusing pi pulses. For a homogeneous field, with linewidth equal to Delta nu = 15 Hz, the refocusing flip angles can be as low as pi/4 to obtain the transverse relaxation time (T(2)) value with errors below 5%. For a less homogeneous magnetic field. Delta nu = 100 Hz, the choice of the LRFA has to take into account the reduction in the intensity of the CPMG signal and the increase in the time constant of the CPMG decay that also becomes dependent on longitudinal relaxation time (T(1)). We have compared the T(2) values measured by conventional CPMG and CPMG(90) for 30 oilseed species, and a good correlation coefficient, r = 0.98, was obtained. Therefore, for oilseeds, the T(2) measurements performed with pi/2 refocusing pulses (CPMG(90)), with the same pulse width of conventional CPMG, use only 25% of the RF power. This reduces the heating problem in the probe and reduces the power deposition in the samples. (C) 2011 Elsevier B.V. All rights reserved.