920 resultados para Powder-metallurgy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Freeform fabrication methods allow the direct formation of parts built layer by layer, under the control of a CAD drawing. Most of these methods form parts in thermoplastic or thermoset polymers, but there would be many applications for freeform fabrication of fully functional metal or ceramic parts. We describe here the freeforming of sinterable aluminium alloys. In addition, the building approach allows different materials to be positioned within a monolithic part for an optimal combination of properties. This is illustrated here with the formation of an aluminium gear with a metal-matrix composite wear surface. (C) 1999 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Materials and methods: Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 mm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Results: Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. Conclusion: These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the in-vivo evaluation of Ti-13Nb-13Zr alloy implants obtained by the hydride route via powder metallurgy. The cylindrical implants were processed at different sintering and holding times. The implants` were characterized for density, microstructure (SEM), crystalline phases (XRD), and bulk (EDS) and surface composition (XPS). The implants were then sterilized and surgically placed in the central region of the rabbit`s tibiae. Two double fluorescent markers were applied at 2 and 3 weeks, and 6 and 7 weeks after implantation. After an 8-week healing period, the implants were retrieved, non-decalcified section processed, and evaluated by electron, UV light (fluorescent labeling), and light microscopy (toluidine blue). BSE-SEM showed close contact between bone and implants. Fluorescent labeling assessment showed high bone activity levels at regions close to the implant surface. Toluidine blue staining revealed regions comprising osteoblasts at regions of newly forming/formed bone close to the implant surface. The results obtained in this study support biocompatible and osseoconductive properties of Ti-13Nb-13Zr processed through the hydride powder route. (c) 2007 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium alloys have several advantages over ferrous and non-ferrous metallic materials, such as high strengthto-weight ratio and excellent corrosion resistance. A blended elemental titanium powder metallurgy process has been developed to offer low cost commercial products. The process employs hydride-dehydride (HDH) powders as raw material. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy due to its lower modulus of elasticity and high biocompatibility is a promising candidate for aerospace and medical use. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 900 up to 1600 °C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like alpha structure and intergranular beta. A few remaining pores are still found and density above 90% for specimens sintered in temperatures over 1500 °C is reached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium and its alloys provide high strength-to-weight ratios, good fatigue strength and increased corrosion resistance compared with others materials. Its acceptance in aerospace has been limited by costs considerations such as high cost of raw material, high buy-to-fly ratios and expensive machining operations. Significant cost reductions can be obtained by vacuum sintering and powder metallurgy (P/M) techniques by producing near net shapes and consequently minimizing material waste and machining time. The Ti 35Nb alloy exhibit a low modulus of elasticity. Stemming from the unique combination of high strength, low modulus of elasticity and low density, this alloy is intrinsically more resistant to shock and explosion damages than most other engineering materials. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900 and 1600 °C, in vacuum. Sintering behavior was studied by means of dilatometry. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Density was measured by Archimedes method. Copyright © 2004 Society of Automotive Engineers, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous titanium scaffolds are promising materials for biomedical applications such as prosthetic anchors, fillers and bone reconstruction. This study evaluated the bone/titanium interface of scaffolds with interconnected pores prepared by powder metallurgy, using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Porous scaffolds and dense samples were implanted in the tibia of rabbits, which were subsequently killed 1, 4, and 8 weeks after surgery. Initial bone neoformation was observed one week after implantation. Bone ingrowth in pores and the Ca/P ratio at the interface were remarkably enhanced at 4 and 8 weeks. The results showed that the interconnected pores of the titanium scaffolds promoted bone ingrowth, which increased over time. The powder metallurgy technique thus proved effective in producing porous scaffolds and dense titanium for biomedical applications, allowing for adequate control of pore size and porosity and promoting bone ingrowth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metal powders may be produced in a number of different ways. In metals where the intercrystalline material is brittle enough, they may be ground in a ball mill or eddy mill. The fineness of such a powder is more or less controlled by the grain size of the original metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Powder metallurgy is a branch of metallurgy which produces metallic compacts in their final forms by means of pressure and heat-treatment from the pow­ders. The products of powder metallurgy are being used in our daily lives quite often. For example, the tungsten wires in the electric bulbs to the silver-tin fillings of our teeth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned primarily with the production of metal powder compacts of iron and tin. In producing these compacts, the effects of process­ing variables on some of the essential properties of the pellets made were investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The art of Powder Metallurgy deals with the preparation of metal powders and their utilization. As a more pertinent definition, the following has been suggest­ed: "Powder Metallurgy is the art of producing metal powders and shaped objects from individual, mixed, or alloyed metal powders, with or without the inclusion of non-metallic consti­tuents".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uranium is a ductile metal and cannot be comminuted to a fine powder by any mechanical means such as crushing, milling or grinding. Uranium, however, reacts readily with hydrogen and forms UH3, which is a fine powder of less than 400 mesh screen size. The factors controlling the rats of the hydride formation are: (a) The surface area of the metal; (b) the temperature at which the reaction takes place; (c) the pressure of hydrogen. In order to increase the reaction area, one has to hydride small metal pieces rather than a single mass. The hydrogen reacts with uranium metal at temperatures as low as 100 deg to 1500 deg, and the reaction rate becomes quite rapid at approximately 225 deg C. The hydrogen for this purpose has to be of high purity and any small amount of oxygen in hydrogen delays the start of the reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract AT-30-1 GEN 366."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract AT-30-1-GEN-366."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Work performed under Contract No. AT-30-1-gen-366"--Page 2 of cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract AT-30-1-Gen-366."