893 resultados para Powder metals


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, a green adsorbent was successfully applied to remove toxic metals from aqueous solutions. Dried minced castor leaves were fractionated into 63-μm particles to perform characterization and extraction experiments. Absorption bands in FTIR (Fourier Transform Infrared Spectroscopy) spectra at 1544, 1232 and 1350 cm-1 were assigned to nitrogen-containing groups. Elemental analysis showed high nitrogen and sulfur content: 5.76 and 1.93%, respectively. The adsorption kinetics for Cd(II) and Pb(II) followed a pseudo-second-order model, and no difference between the experimental and calculated Nf values (0.094 and 0.05 mmol g-1 for Cd(II) and Pb(II), respectively) was observed. The Ns values calculated using the modified Langmuir equation, 0.340 and 0.327 mmol g-1 for Cd(II) and Pb(II), respectively, were superior to the results obtained for several materials in the literature. The method proposed in this study was applied to pre-concentrate (45-fold enrichment factor) and used to measure Cd(II) and Pb(II) in freshwater samples from the Paraná River. The method was validated through a comparative analysis with a standard reference material (1643e). © 2013 Elsevier B.V. © 2013 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to study the influence of the amorphous Boron powder on the superconducting properties, MgB2 bulk samples were prepared using 96% and 99% pure commercial Boron powder as well as 92% commercial Boron powder after purification process. The results showed that the original 96% and the purified 92% powders have larger particle size compared to the pure 99% Boron powder, which leads to reduce magnetic critical current densities. In order to get higher performance MgB2, the purified low grade Boron powder need further control of their microstructure such as smaller particle size to enhance flux pinning from the grain boundaries which represent effective pinning centers. © 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

MgB2 bulk samples containing different proportions of Mg-Ga powder were prepared by an in situ reaction technique. The Mg-Ga powder was obtained via high energy ball milling of a Mg-10 at.% Ga composite, which was fabricated by melting of pure magnesium and gallium metals inside encapsulated stainless steel tube at 655 °C in a controlled atmosphere. The MgB2 samples containing 0, 1, 3, 5 and 7 wt.% of MgGa addition were sintered at 650 °C for 30 min in argon atmosphere. Magnetic measurements performed at 5 K and 20 K showed improved critical current density, Jc, in the low magnetic field range for samples with MgGa addition. The critical temperature, Tc, for all samples with gallium additions is consistently higher when compared to the pure MgB2. © 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Bi-Sr-Ca-Cu-O system has been one of the most studied superconducting ceramic materials for industry applications. The most of the studies with this aim are on silver/ceramic composites, due to the benefits and great compatibility of this metal with the oxide. Tapes made by the powder in tube (PIT) method have been successfully tested in pilot power plants in many countries but in Brazil. In this paper, 5, 10, and 20-wt% silver powders are introduced to compose the core of the tape along with the Bi:2212 ceramic powder. The results of electrical experiments are compared with those made with no silver addition Ag tapes. The best current density, at 60 K and no applied magnetic field, was found for the 10-wt% silver proportion, doubling the value obtained for the tape with no silver in the core.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Co3O4 can be used as electrocatalyst for oxygen evolution reaction. The macro and microstructure of the oxide, obtained by compacting and sintering lithium-doped Co3O4 powder in atmosphere of dry air and in conditions of controlled temperature and time was analyzed by metallographic techniques. The porous material was characterized by XRD, SEM and EDS combined techniques. For working temperatures up to 1200°C, the pellet was consituted of particles with varying sizes over a wide range of particle size and, at higher temperatures CoO is formed and polymorphic transformation was observed. The materials were also characterized electrochemically in alkaline media by open circuit potential and potentiodynamic I/E measurements. The results were compared to those previously prepared by others by thermal deposition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complex perovskite compound 0.9PbMg 1/3Nb 2/3O 3-0.1PbTiO 3 is one of the most promising relaxor ceramic because the addition of lead titanate increases T m, by about 5°C/mol% from intrinsic T m value for pure PMN (near -7 to -15°C). A Ti-modified columbite precursor was used to prepare PMN-PT powders containing single perovskite phase. This variation on columbite route includes Ti insertion in MgNb 2O 6 orthorhombic structure so that individual PT synthesis becomes unnecessary. Furthermore, effects of Li additive on columbite and PMN-PT structures were studied by XRD to verify the phase formation at each processing step. XRD data were also used for the structural refinement by Rietveld method. The additive acts increasing columbite powders crystallinity, and the amount of perovskite phase was insignificantly decreased by lithium addition. By SEM micrographs it was observed that Li presence in PMN-PT powders leads to the formation of rounded primary particles and for lmol% of additive, the grain size is not changed, different from when this concentration is enhanced to 2mol%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During gray cast iron cutting, the great rate of mechanical energy from cutting forces is converted into heat. Considerable heat is generated, principally in three areas: the shear zone, rake face and at the clearance side of the cutting edge. Excessive heat will cause undesirable high temperature in the tool which leads to softening of the tool and its accelerated wear and breakage. Nowadays the advanced ceramics are widely used in cutting tools. In this paper a composition special of Si3N4 was sintering, characterized, cut and ground to make SNGN120408 and applyed in machining gray cast iron with hardness equal 205 HB in dry cutting conditions by using digital controlled computer lathe. The tool performance was analysed in function of cutting forces, flank wear, temperature and roughness. Therefore metal removing process is carried out for three different cutting speeds (300 m/min, 600 m/min, and 800 m/min), while a cutting depth of 1 mm and a feed rate of 0.33 mm/rev are kept constant. As a result of the experiments, the lowest main cutting force, which depends on cutting speed, is obtained as 264 N at 600 m/min while the highest main cutting force is recorded as 294 N at 300 m/min.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes research on a simple low-temperature synthesis route to prepare bismuth ferrite nanopowders by the polymeric precursor method using bismuth and iron nitrates. BiFeO 3 (BFO) nanopowders were characterized by means of X-ray diffraction analyses, (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy (Raman), thermogravimnetric analyses (TG-DTA), ultra-violet/vis (UV/Vis) and field emission scanning electron microscopy (FE-SEM). XRD patterns confirmed that a pure perovskite BiFeO 3 structure with a rhombohedral distorted perovskite structure was obtained by heating at 850 °C for 4 hours. Typical FT-IR spectra for BFO powders revealed the formation of a perovskite structure at high temperatures due to a metal-oxygen bond while Raman modes indicated oxygen octahedral tilts induced by structural distortion. A homogeneous size distribution of BFO powders obtained at 850 °C for 4 hours was verified by FE-SEM analyses. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the possible alternative removal options for the development of safe drinking water supply in the trace elements affected areas. Arsenic and chromium are two of the most toxic pollutants, introduced into natural waters from a variety of sources and causes various adverse effects on living bodies. Performance of three filter bed method was evaluated in the laboratory. Experiments have been conducted to investigate the sorption of arsenic and chromium on carbon steel and removal of trace elements from drinking water with a household filtration process. The affinity of the arsenic and chromium species for Fe/Fe(3)C (iron/iron carbide) sites is the key factor controlling the removal of the elements. The method is based on the use of powdered block carbon (PBC), powder carbon steel and ball ceramic in the ion-sorption columns as a cleaning process. The PBC modified is a satisfactory and practical sorbent for trace elements (arsenite and chromate) dissolved in water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Química Pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid state compounds of general formula ML2.nH2O [where M is Mg, Ca, Sr or Ba; L is cinnamate (C6H5 -CH=CH-COO-) and n = 2, 4, 0.8, 3 respectively], have been synthetized. Thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC) and X-ray diffraction powder patterns have been used to characterize and to study the thermal stability and thermal decomposition of these compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid state compounds of general formula M(DMCP)2.nH2O, where M represents Mg, Ca, Sr, Ba, and DMCP is 4-dimethylaminocinnamylidenepyruvate, and n = 1, except for Ca, where n = 2.5, have been prepared. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometry were used to characterize and to study the thermal decomposition of these compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid state compounds M-2-Cl-BP, where 2-Cl-BP is 2-chlorobenzylidenepyruvate and M represents Al, Ga, In, and Sc were prepared. X-ray powder diffractometry, infrared spectroscopy and simultaneous thermogravimetry-differential thermal analysis (TG-DTA), have been used to characterize and to study the thermal behavior of these compounds. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition of the compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

WO3-based materials as sensors for the monitor of environmental gases such as NO2 (NO + NO2) have been rapidly developed for various potential applications (stationary and mobile uses). It has been reported that these materials are highly sensitive to NOx with the sensitivity further enhanced by adding precious group metals (PGM such as Pt, Pd, Au, etc.). However, there has been limited work in revealing the sensing mechanism for these gases over the WO3-based sensors. In particular, the role of promoter is not yet clear though speculations on their catalytic, electronic and structural effects have been made in the past. In parallel to these PGM promoters here we report,for the first time, that Ag promotion can also enhance WO3 sensitivity significantly. In addition, this promotion decreases the optimum sensor temperature of 300 degreesC for Most WO3-based sensors, to below 200 degreesC. Characterizations (XRD, TEM, and impedance measurement) reveal that there is no significant bulk structure change nor particle size alteration in the WO3 phases during the NO exposure. However, it is found that the Ag doping creates a high concentration of oxygen vacancies in form of coordinated crystallographic shear (CS) planes onto the underneath WO3. It is thus proposed that the Ag particle facilitates the oxidative conversion of NO to NO2 followed by a subsequent NO2 adsorption on the defective WO, sites created at the Ag-WO3 interface; hence, accounting for the high molecular sensitivity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)