936 resultados para Poultry farms
Resumo:
Reliable and sufficiently discriminative methods are needed for differentiating individual strains of Salmonella enterica serotype Enteritidis beyond the phenotypic level; however, a consensus has not been reached as to which molecular method is best suited for this purpose. In addition, data are lacking on the molecular fingerprinting of serotype Enteritidis from poultry environments in the United Kingdom. This study evaluated the combined use of classical methods (phage typing) with three well-established molecular methods (ribotyping, macrorestriction analysis of genomic DNA, and plasmid profiling) in the assessment of diversity within 104 isolates of serotype Enteritidis from eight unaffiliated poultry farms in England. The most sensitive technique for identifying polymorphism was PstI-SphII ribotyping, distinguishing a total of 22 patterns, 10 of which were found among phage type 4 isolates. Pulsed-field gel electrophoresis of XhaI-digested genomic DNA segregated the isolates into only six types with minor differences between them. In addition, 14 plasmid profiles were found among this population. When all of the typing methods were combined, 54 types of strains were differentiated, and most of the poultry farms presented a variety of strains, which suggests that serotype Enteritidis organisms representing different genomic groups are circulating in England. In conclusion, geographical and animal origins of Salmonella serotype Enteritidis isolates may have a considerable influence on selecting the best typing strategy for individual programs, and a single method cannot be relied on for discriminating between strains.
Resumo:
Rotaviruses are a major cause of diarrhea in humans and animals, including several mammalian and avian species. Using different PCR protocols, we report the occurrence of rotavirus A in 21 (53.84%; 21/39) from 39 fecal pool samples of broilers, layers, and broiler breeders from Brazilian avian farms. We typed the G5, G8, G11, G19, and P[31] genotypes
Resumo:
Background: Nigeria was one of the 13 countries where avian influenza outbreak in poultry farms was reported during the 2006 avian influenza pandemic threat and was also the first country in Africa to report the presence of H5N1influenza among its poultry population. There are multiple hypotheses on how the avian influenza outbreak of 2006 was introduced to Nigeria, but the consensus is that once introduced, poultry farms and their workers were responsible for 70% of the spread of avian influenza virus to other poultry farms and the population. ^ The spread of avian influenza has been attributed to lack of compliance by poultry farms and their workers with poultry farm biosecurity measures. When poultry farms fail to adhere to biosecurity measures and there is an outbreak of infectious diseases like in 2006, epidemiological investigations usually assess poultry farm biosecurity—often with the aid of a questionnaire. Despite the importance of questionnaires in determining farm compliance with biosecurity measures, there have been few efforts to determine the validity of questionnaires designed to assess poultry farms risk factors. Hence, this study developed and validated a tool (questionnaire) that can be used for poultry farm risk stratification in Imo State, Nigeria. ^ Methods: Risk domains were generated using literature and recommendations from agricultural organizations and the Nigeria government for poultry farms. The risk domains were then used to develop a questionnaire. Both the risk domain and questionnaire were verified and modified by a group of five experts with a research interest in Nigeria's poultry industry and/or avian influenza prevention. Once a consensus was reached by the experts, the questionnaire was distributed to 30 selected poultry farms in Imo State, Nigeria that participated in this study. Survey responses were received for all the 30 poultry farms that were selected. The same poultry farms were visited one week after they completed the questionnaires for on-site observation. Agreement among survey and observation results were analyzed using a kappa test and rated as poor, fair, moderate, substantial, or nearly perfect; and internal consistency of the survey was also computed. ^ Result: Out of the 43 items on the questionnaire, 32 items were validated by this study. The agreement between the survey result and onsite observation was analyzed using kappa test and ranged from poor to nearly perfect. Most poultry farms had their best agreements in the contact section of the survey. The least agreement was noted in the farm management section of the survey. Thirty-two questions on the survey had a coefficient alpha > 0.70, which is a robust internal consistency for the survey. ^ Conclusion: This study developed 14 risk domains for poultry farms in Nigeria and validated 32 items from the original questionnaire that contained 43 items. The validated items can be used to determine the risk of introduction and spread of avian influenza virus in poultry farms in Imo State, Nigeria. After further validations in other states, regions and poultry farm sectors in Nigeria; this risk assessment tool can then be used to determine the risk profile of poultry farms across Nigeria.^
Resumo:
Aims: To estimate the proportions of farms on which broilers, turkeys and pigs were shedding fluoroquinolone (FQ)-resistant Escherichia coli or Campylobacter spp. near to slaughter. Methods and Results: Freshly voided faeces were collected on 89 poultry and 108 pig farms and cultured with media containing 1.0 mg l(-1) ciprofloxacin. Studies demonstrated the specificity of this sensitive method, and both poultry and pig sampling yielded FQ-resistant E. coli on 60% of farms. FQ-resistant Campylobacter spp. were found on around 22% of poultry and 75% of pig farms. The majority of resistant isolates of Campylobacter (89%) and E. coli (96%) tested had minimum inhibitory concentrations for ciprofloxacin of >= 8 mg l(-1). The proportion of resistant E. coli and Campylobacter organisms within samples varied widely. Conclusions: FQ resistance is commonly present among two enteric bacterial genera prevalent on pig and poultry farms, although the low proportion of resistant organisms in many cases requires a sensitive detection technique. Significance and Impact of the Study: FQ-resistant bacteria with zoonotic potential appear to be present on a high proportion of UK pig and poultry farms. The risk this poses to consumers relative to other causes of FQ-resistant human infections remains to be clarified.
Resumo:
Intensive pig and poultry farming in Australia can be a source of pathogens with implications for food-safety and/or human illness. Seven studies were undertaken with the following objectives: · Assess the types of zoonotic pathogens in waste · Assess the transfer of pathogens during re-use both within the shed and externally in the environment · The potential for movement of pathogens via aerosols In the first and second studies the extent of zoonotic pathogens was evaluated in both piggery effluent and chicken litter and Salmonella and Campylobacter were detected in both wastes. In the third study the dynamics of Salmonella during litter re-use was examined and results showed a trend for lower Salmonella levels and serovar diversity in re-used litter compared to new litter. Thus, re-use within the poultry farming system posed no increased risk. The fourth study addressed the direct risks of pathogens to farm workers due to reuse of piggery effluent within the pig shed. Based on air-borne Escherichia coli (E. coli) levels, re-using effluent did not pose a risk. In the fifth study high levels of Arcobacter spp. were detected in effluent ponds and freshly irrigated soils with potential food-safety risks during the irrigation of food-crops and pasture. The sixth and seventh studies addressed the risks from aerosols from mechanically ventilated sheds. Staphylococci were shown to have potential as markers, with airborne levels gradually dropping and reaching background levels at 400 m distance. Salmonella was detected (at low levels) both inside and outside the shed (at 10 m). Campylobacter was detected only once inside the shed during the 3-year period (at low levels). Results showed there was minimal risk to humans living adjacent to poultry farms This is the first comprehensive analysis studying key food-safety pathogens and potential public health risks associated with intensively farmed pigs and poultry in Australia.
Resumo:
E. coli avec potentiel zoonotique pourrait éclore dans les réservoirs porcins et avicoles. Cette étude consiste à examiner la présence de souches E. coli porteuses de gènes virulents associés aux STEC (E. coli producteurs de Shiga-toxines), EPEC (E. coli entéropathogène), et ExPEC (E. coli pathogène extra-intestinal) chez les porcs et volailles élevés au Vietnam. Des prélèvements d’excréments et de carcasses ont été effectués dans des fermes et abattoirs porcins et avicoles sélectionnés où les animaux ont été suivis de l’élevage à l’abattage. Un total de 13,1% des souches, toutes sources confondues, ont été catégorisées comme potentiellement contaminées par ExPEC, possédant un ou plusieurs gènes de virulence iucD, tsh, papC et cnf. Peu d’isolats d’autres pathotypes ont été observés. Tous les gènes de virulence ExPEC, à l’exception de cnf, ont été identifiés plus fréquemment dans les isolats de fèces et carcasses avicoles que dans les isolats porcins. Même constatation pour le groupe du phylogénétique D. Une multirésistance aux médicaments a été régulièrement observée chez les deux isolats ExPEC. Les isolats de fèces de volailles ont souvent été associés à une résistance à l’acide nalidixique et à la ciprofloxacine (P<0.05), de même qu’au gène blaTEM, alors que les gènes qnr et aac(6’)-Ib ont peu été rencontrés des deux côtés. Cette étude démontre que les isolats ExPEC avicoles sont potentiellement plus pathogèniques que ceux porcins et que les isolats ExPEC de carcasses porcines et avicoles peuvent provenir de leurs excréments par la contamination associée au processus d'abattage. Ainsi, la volaille, particulièrement, serait un facteur de transmission de souches ExPEC zoonotiques.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A descriptive study was developed in order to compare indoor and outdoor air contamination caused by fungi and particles in seven poultry units. Twenty eight air samples of 25 litters were collected through the impaction method on malt extract agar. Air sampling and particles concentration measurement were done in the interior and also outside premises of the poultries’ pavilions. Regarding the fungal load in the air, indoor concentration of mold was higher than outside air in six poultry units. Twenty eight species / genera of fungi were identified indoor, being Scopulariopsis brevicaulis (40.5%) the most commonly isolated species and Rhizopus sp. (30.0%) the most commonly isolated genus. Concerning outdoor, eighteen species/genera of fungi were isolated, being Scopulariopsis brevicaulis (62.6%) also the most isolated. All the poultry farms analyzed presented indoor fungi different from the ones identified outdoors. Regarding particles’ contamination, PM2.5, PM5.0 and PM10 had a statistically significant difference (Mann-Whitney U test) between the inside and outside of the pavilions, with the inside more contaminated (p=.006; p=.005; p=.005, respectively). The analyzed poultry units are potential reservoirs of substantial amounts of fungi and particles and could therefore free them in the atmospheric air. The developed study showed that indoor air was more contaminated than outdoors, and this can result in emission of potentially pathogenic fungi and particles via aerosols from poultry units to the environment, which may post a considerable risk to public health and contribute to environmental pollution.
Resumo:
This study assessed the levels of two key pathogens, Salmonella and Campylobacter, along with the indicator organism Escherichia coli in aerosols within and outside poultry sheds. The study ranged over a 3-year period on four poultry farms and consisted of six trials across the boiler production cycle of around 55 days. Weekly testing of litter and aerosols was carried out through the cycle. A key point that emerged is that the levels of airborne bacteria are linked to the levels of these bacteria in litter. This hypothesis was demonstrated by E. coli. The typical levels of E. coli in litter were similar to 10(8) CFU g(-1) and, as a consequence, were in the range of 10(2) to 10(4) CFU m(-3) in aerosols, both inside and outside the shed. The external levels were always lower than the internal levels. Salmonella was only present intermittently in litter and at lower levels (10(3) to 10(5) most probable number [MPN] g(-1)) and consequently present only intermittently and at low levels in air inside (range of 0.65 to 4.4 MPN m(-3)) and once outside (2.3 MPN m(-3)). The Salmonella serovars isolated in litter were generally also isolated from aerosols and dust, with the Salmonella serovars Chester and Sofia being the dominant serovars across these interfaces. Campylobacter was detected late in the production cycle, in litter at levels of around 107 MPN g(-1). Campylobacter was detected only once inside the shed and then at low levels of 2.2 MPN m(-3). Thus, the public health risk from these organisms in poultry environments via the aerosol pathway is minimal.
Resumo:
Les marchés traditionnels et maintenant les supermarchés approvisionnent les demandes sans cesse en augmentation pour la viande de volaille au Vietnam. Peu d’études ont examiné la présence des E. coli pathogènes extra-intestinaux (ExPEC), une cause commune d’infection urinaire chez les humains, de même que la résistance aux antimicrobiens, la multi-résistance des Escherichia coli dans la viande de volaille au Vietnam. Le but de cette étude était d’évaluer la salubrité de la viande de volaille au Vietnam et de comparer les patrons de résistance aux antimicrobiens entre le Canada et le Vietnam. Des carcasses fraîches et congelées des marchés traditionnels et des supermarchés ont été échantillonnées au Vietnam. Les E. coli obtenus par rinçage des carcasses ont été caractérisé pour les gènes de virulence ExPEC (iucD, cnf, papC, tsh, Kps, afa, sfa) et pour la résistance aux antimicrobiens, phénotypiquement (Sensititre Aris®) et génotypiquement par PCR. Une multi-résistance et une fréquence élevée de résistance aux antimicrobiens d’importance pour les humains ont été détectées dans les isolats ExPEC. Les E. coli producteurs de β-lactamases à spectre élargi et de type AmpC et les gènes de résistance CTX-M et CMY correspondant ont été détectés. Des isolats multi-résistants BLSE putatif ont été identifiés appartenant au phylogroupe F. Les stratégies sur les antimicrobiens employés sur la ferme au Canada et au Vietnam pourraient influencer les profils de résistance des E. coli provenant des carcasses de poulets. En conclusion, la présence des ExPEC, la fréquence élevée de la résistance aux antimicrobiens et la détection des beta-lactamases soulignent la présence de danger pour la santé humaine de la viande de volaille crue ou insuffisamment cuite au Vietnam.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The protective effect of various Salmonella vaccines regimens against an experimental Salmonella Gallinarum challenge (SGNalr strain at 12 wk of age) was evaluated in two experiments. In Experiment 1 commercial brown layers were vaccinated according to one of the following programs: (i) two doses of a SE bacterin (Layermune SE; group 1); (ii) a first dose of a live SG9R vaccine (Cevac SG9R) followed by a SE bacterin (Layermune SE; group 2); (iii) one dose of each of two different multivalent inactivated vaccines containing SE cells (Corymune 4 & Corymune 7; group 3) or (iv) not vaccinated (group 4). In Experiment 2, broiler breeders were given the same vaccination treatments except for the group vaccinated with the multivalent vaccines. Overall, in both experiments, all vaccination schemes were effective in reducing mortality after challenge with a SG field strain. Primary vaccination with an initial dose of a live SG9R vaccine followed some weeks later by a dose of an inactivated SE bacterin was the most effective (p<0.05) vaccination program against mortality induced by field SG experimental challenge in both experiments. In conclusion, Salmonella vaccination programs containing SE bacterins alone or in combination with a live SG9R vaccine are effective in preventing mortality induced by infection of field SG. Nevertheless, it is important to emphasize that any vaccination program against any Salmonella serotype will only be effective if it is part of a sound and comprehensive biosecurity program designed for Salmonella control in poultry farms.
Resumo:
Except for the meat- and egg-type strains used in commercial poultry farms in Brazil, there are no scientific reports about the origin of birds from the genus Gallus that have been introduced in this country with domestication or fighting purposes. Therefore, the aim of this study was to identify the position of the Brazilian Game Bird in the phylogenetic tree of the genus Gallus by nucleotide sequence analysis of the mitochondrial DNA D-loop region. The results indicate that fighting roosters comprise two different clusters within the species Gallus gallus domesticus. One of the clusters is related to the wild ancestors, while the other one is more related to the birds raised by the poultry industry. In conclusion, Brazilian fighting roosters have originated from the red jungle fowl (Gallus gallus) and belong to the subspecies Gallus gallus domesticus.
Resumo:
The aim of this paper is to verify the correlation between environmental indicators and behaviors expressed by laying hens kept in cages. The birds react to a severe environment through their behaviors, end the behaviors can be monitored to identify the birds' welfare conditions. The behaviors birds display ere the result of stress caused by the combination of environmental temperature, relative humidity, radiant heat, and air speed (environmental temperature being the most important). In order to check the influence of the environment, an experiment was carried out on a commercial poultry farm, located in the city of Bastos. The study was initiated in March 2007, during four non-consecutive weeks. The birds' behaviors were recorded using video, by cameras installed in the cages. The birds behaviors were identified and noted for the frequency of occurrence for each bird, and the average duration of each behavior (in seconds), using video samples of 15 minutes recorded from 1 PM to 4 PM. The environmental variables collected were: air temperature, concentration of ammonia, relative air humidity, velocity of the air, noise, roof temperature, and light intensity. The observed behaviors were: opening wings, stretching, threatening, ruffling feathers, drinking water, aggressive pecking, eating, running, lying down, stretching head out of the cage, preening, mounting and prostrating. Principal Components Analysis was used to determine associations between the behavior variables and environmental variables described above. In this experiment, there were no significant correlations between behavioral variables and environmental variables.