922 resultados para Potent antioxidants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In search for a new antioxidant and antimicrobial agent with improved potency, we synthesized a series of benzofuran based 1,3,5-substituted pyrazole analogues (5a-l) in five step reaction. Initially, o-alkyl derivative of salicyaldehyde readily furnish corresponding 2-acetyl benzofuran 2 in good yield, on treatment with 1,8-diaza bicyclo5.4.0]undec-7-ene (DBU) in the presence of molecular sieves. Further, aldol condensation with vanillin, Claisen-Schmidt condensation reaction with hydrazine hydrate followed by coupling of substituted anilines afforded target compounds. The structures of newly synthesized compounds were confirmed by IR, H-1 NMR, C-13 NMR, mass, elemental analysis and further screened for their antioxidant and antimicrobial activities. Among the tested compounds 5d and 5f exhibited good antioxidant property with 50% inhibitory concentration higher than that of reference while compounds 5h and 5l exhibited good antimicrobial activity at concentration 1.0 and 0.5 mg/mL compared with standard, streptomycin and fluconazole respectively. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soy-derived phytoestrogen genistein and 17β-estradiol (E2), the principal endogenous estrogen in women, are also potent antioxidants protecting LDL and HDL lipoproteins against oxidation. This protection is enhanced by esterification with fatty acids, resulting in lipophilic molecules that accumulate in lipoproteins or fatty tissues. The aims were to investigate, whether genistein becomes esterified with fatty acids in human plasma accumulating in lipoproteins, and to develop a method for their quantitation; to study the antioxidant activity of different natural and synthetic estrogens in LDL and HDL; and to determine the E2 esters in visceral and subcutaneous fat in late pregnancy and in pre- and postmenopause. Human plasma was incubated with [3H]genistein and its esters were analyzed from lipoprotein fractions. Time-resolved fluoroimmunoassay (TR-FIA) was used to quantitate genistein esters in monkey plasma after subcutaneous and oral administration. The E2 esters in women s serum and adipose tissue were also quantitated using TR-FIA. The antioxidant activity of estrogen derivatives (n=43) on LDL and HDL was assessed by monitoring the copper induced formation of conjugated dienes. Human plasma was shown to produce lipoprotein-bound genistein fatty acid esters, providing a possible explanation for the previously reported increased oxidation resistance of LDL particles during intake of soybean phytoestrogens. Genistein esters were introduced into blood by subcutaneous administration. The antioxidant effect of estrogens on lipoproteins is highly structure-dependent. LDL and HDL were protected against oxidation by many unesterified, yet lipophilic derivatives. The strongest antioxidants had an unsubstituted A-ring phenolic hydroxyl group with one or two adjacent methoxy groups. E2 ester levels were high during late pregnancy. The median concentration of E2 esters in pregnancy serum was 0.42 nmol/l (n=13) and in pre- (n=8) and postmenopause (n=6) 0.07 and 0.06 nmol/l, respectively. In pregnancy visceral fat the concentration of E2 esters was 4.24 nmol/l and in pre- and postmenopause 0.82 and 0.74 nmol/l. The results from subcutaneous fat were similar. In serum and fat during pregnancy, E2 esters constituted about 0.5 and 10% of the free E2. In non-pregnant women most of the E2 in fat was esterified (the ester/free ratio 150 - 490%). In postmenopause, E2 levels in fat highly exceeded those in serum, the majority being esterified. The pathways for fatty acid esterification of steroid hormones are found in organisms ranging from invertebrates to vertebrates. The evolutionary preservation and relative abundance of E2 esters, especially in fat tissue, suggest a biological function, most likely in providing a readily available source of E2. The body s own estrogen reservoir could be used as a source of E2 by pharmacologically regulating the E2 esterification or hydrolysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Strawberries have been reported to be potent antioxidants and reduce cardiovascular risk factors, such as elevated blood pressure, hyperglycemia, dyslipidemia, and inflammation in limited studies. We hypothesized that freeze-dried strawberry supplementation will improve blood pressure, impaired glucose, dyslipidemia, or circulating adhesion molecules in obese subjects with metabolic syndrome, thereby lowering cardiovascular risk factors in these subjects. Twenty-seven subjects with metabolic syndrome (2 males and 25 females; body mass index, 37.5 +/- 2.15 kg/m(2); age, 47.0 +/- 3.0 years [means +/- SE]) consumed 4 cups of freeze-dried strawberry beverage (50 g freeze-dried strawberries approximately 3 cups fresh strawberries) or equivalent amounts of fluids (controls, 4 cups of water) daily for 8 weeks in a randomized controlled trial. Anthropometrics and blood pressure measurements, assessment of dietary intakes, and fasting blood draws were conducted at screen and 8 weeks of the study. Strawberry supplementation significantly decreased total and low-density lipoprotein cholesterol (5.8 +/- 0.2 to 5.2 +/- 0.2 mmol/L and 3.5 +/- 0.2 to 3.1 +/- 0.1 mmol/L, respectively [means +/- SE], P <.05) and small low-density lipoprotein particles using nuclear magnetic resonance-determined lipoprotein subclass profile vs controls at 8 weeks (794.6 +/- 94.0 to 681.8 +/- 86.0 nmol/L [means +/- SE], P <.05). Strawberry supplementation further decreased circulating levels of vascular cell adhesion molecule-1 vs controls at 8 weeks (272.7 +/- 17.4 to 223.0 +/- 14.0 ng/mL [means +/- SE], P <.05). Serum glucose, triglycerides, high-density lipoprotein cholesterol, blood pressure, and waist circumference were not affected. Thus, short-term freeze-dried strawberry supplementation improved selected atherosclerotic risk factors, including dyslipidemia and circulating adhesion molecules in subjects with metabolic syndrome, and these results need confirmation in future trials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Strawberry flavonoids are potent antioxidants and anti-inflammatory agents that have been shown to reduce cardiovascular disease risk factors in prospective cohort studies. Effects of strawberry supplementation on metabolic risk factors have not been studied in obese populations. We tested the hypothesis that freeze-dried strawberry powder (FSP) will lower fasting lipids and biomarkers of oxidative stress and inflammation at four weeks compared to baseline. We also tested the tolerability and safety of FSP in subjects with metabolic syndrome. FSP is a concentrated source of polyphenolic flavonoids, fiber and phytosterols.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SIGNIFICANCE: Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year.

RECENT ADVANCES: The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell.

CRITICAL ISSUES: CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics.

FUTURE DIRECTIONS: In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

N-1-acetyl-N-2-formyl-5-methoxykynuramine (AFMK) and N-1-acetyl-5-methoxykynuramine (AMK), two melatonin catabolites, have been described as potent antioxidants. We aimed to follow the kinetics of AFMK and AMK formation when melatonin is oxidized by phorbol myristate acetate (PMA) and lipopolysaccharide (LPS)-activated leukocytes. An HPLC-based method was used for AFMK and AMK determination in neutrophil and peripheral blood mononuclear cell cultures supernatants. Samples were separated isocratically on a C18 reverse-phase column using acetonitrile/H2O (25:75) as the mobile phase. AFMK was detected by fluorescence (excitation 340 nm and emission 460 nm) and AMK by UV-VIS absorbance (254 nm). Activation of neutrophils and mononuclear cells with PMA produces larger amounts of AFMK than activation with LPS, probably due to the lower levels of reactive oxygen species formation and myeloperoxidase (MPO) degranulation that occurs when cells are stimulated with LPS. The concentration of AMK found in the supernatant was about 5-10% (from 18-hr cultures) compared with AFMK. This result may reflect its reactivity. Indeed AMK, but not AFMK, is easily oxidized by activated neutrophils in a MPO and hydrogen peroxide-dependent reaction. In conclusion, we defined a simple procedure for the determination of AFMK and AMK in biological samples and demonstrated the capacity of leukocytes to oxidize melatonin and AMK.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lycopene is a natural pigment synthesized by plants and microorganisms, and it is mainly found in tomatoes. It is an acyclic isomer of P-carotene and one of the most potent antioxidants. Several studies have demonstrated the ability of lycopene to prevent chemically induced DNA damage; however, the mechanisms involved are still not clear. In the present study, we investigated the antigenotoxic/antimutagenic effects of lycopene in Chinese Hamster Ovary Cells (CHO) treated with hydrogen peroxide, methylmethanesulphonate (MMS), or 4-nitroquinoline-1-oxide (4-NQO). Lycopene (97%), at final concentrations of 10, 25, and 50 M, was tested under three different protocols: before, simultaneously, and after the treatment with the mutagens. Comet and cytokinesis-block micronucleus assays were used to evaluate the level of DNA damage. Data showed that lycopene reduced the frequency of micronucleated cells induced by the three mutagens. However, this chemopreventive activity was dependent on the concentrations and treatment schedules used. Similar results were observed in the comet assay, although some enhancements of primary DNA damage were detected when the carotenoid was administered after the mutagens. In conclusion, our findings confirmed the chemopreventive activity of lycopene, and showed that this effect occurs under different mechanisms. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Turmeric oleoresin is a colorant prepared by solvent extraction of turmeric (Curcuma longa L.). Curcumin, the major pigment present in turmeric, has been described as a potent antioxidant, anti-inflammatory and anticarcinogenic agent. Turmeric pigments are lipid soluble and water insoluble and are sensitive to light, heat, oxygen and pH, which can be overcome by microencapsulation of turmeric oleoresin. The aim of this work was to investigate microencapsulation of turmeric oleoresin by complex coacervation using gelatin and gum Arabic as encapsulants and freeze-drying as the drying method. The coacervation process was studied by varying the concentration of biopolymer solution (2.5, 5.0 and 7.5%) and the core material: total encapsulant ratio (25, 50, 75 and 100%). Microcapsules were evaluated for encapsulation efficiency, morphology, solubility and stability to light. Encapsulation efficiency ranged from 49 to 73% and samples produced with 2.5% of wall material and 100% core: encapsulant ratio showed better stability to light. © 2012 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxidativer Stress ist seit über 25 Jahren als ein Charakteristikum vieler pathologischer Prozesse bekannt. Helmut Sies beschrieb bereits in den 1980er Jahren oxidativen Stress als Störung in der prooxidativ – antioxidativen Balance zugunsten der prooxidativen Seite, wodurch es potentiell zu Schäden in verschiedenen Geweben kommt. Oxidativer Stress tritt sowohl bei neurodegenerativen Erkrankungen wie Morbus Alzheimer, Morbus Parkinson und zerebraler Ischämie, bei peripheren Erkrankungen wie Arteriosklerose, als auch beim Alterungsprozess per se auf und wird als Ursache oder zumindest als ein krankheitsfördernder Faktor diskutiert. Die in in vitro-Experimenten als vielversprechend antioxidativ getesteten Substanzen (meist phenolhaltig) ergaben in mehreren klinischen Studien keinen signifikanten Vorteil. Um die Ursachen dieser Ergebnisse näher zu analysieren, wurde in der vorliegenden Arbeit auf Basis des cytoprotektiven Phenothiazins, einem aromatischen trizyklischen Amin, der Einfluss von verschiedenen Substituenten im Hinblick auf Lipophilie, Radikalstabilisierung und Löslichkeit des Moleküls chemisch vorhergesagt. Anhand dieser in silicio Struktur-Wirkungs-Beziehung wurden anschließend neue Modellsubstanzen synthetisiert, welche sich systematisch in den drei zuvor genannten Parametern unterschieden. Dies wurde durch Substitution von unterschiedlich langen Fettsäureketten, von löslichkeitsbeeinflussenden funktionellen Gruppen, oder durch Anellierung zusätzlicher aromatischer Ringe erreicht. In den folgenden Versuchen zu antioxidativer Kapazität, zellulärem Überleben, Lipidperoxidation und Proteinoxidation zeigte sich, dass mit gesteigerter Stabilität der korrespondierenden Radikale und mit wachsender Lipophilie die antioxidativ cytoprotektive Aktivität der neuen Derivate bis zu einer gewissen Grenze (logP ≈ 7) signifikant zunahm; über diesen Wert hinaus sank die Effektivität wieder ab. Benzanellierte Phenothiazine entwickelten mit EC50-Werten von ungefähr 8-10 nM die höchste mittlere effektive Wirkkonzentration in oxidativ geschädigten, klonalen hippocampalen Neuronen (HT-22 Zellen). Dies entspricht einer etwa 20-fachen Verbesserung gegenüber α-Tocopherol, welches bisher als bestes natürliches lipophiles Antioxidans angesehen wurde. Im Vergleich zu Phenothiazin erreichen die neuen Antioxidantien immerhin eine höhere Effektivität um den Faktor 4. Folglich sind es sowohl Aspekte der Löslichkeit und der Distribution, welche die Potenz der gegenwärtigen Antioxidantien limitieren als auch Aspekte der Radikalstabilisierung, die Einfluss auf die primäre Wirksamkeit nehmen. Dieses Wissen sollte beim zukünftigen Design neuer, antioxidativ potenter Moleküle im Hinblick auf ihren langfristigen Einsatz bei neurodegenerativen Erkrankungen von Nutzen sein.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Epidemiologic evidence suggests that serum carotenoids are potent antioxidants and may play a protective role in the development of chronic diseases including cancers, cardiovascular disease, and inflammatory diseases. The role of these antioxidants in the pathogenesis of diabetes mellitus remains unclear. Objective: This study examined data from a cross-sectional survey to investigate the association between serum carotenoids and type 2 diabetes. Design: Study participants were adults aged >= 25 y (n = 1597) from 6 randomly selected cities and towns in Queensland, Australia. Study examinations conducted between October and December 2000 included fasting plasma glucose, an oral-glucose-tolerance test, and measurement of the serum concentrations of 5 carotenoid compounds. Results: Mean 2-h postload plasma glucose and fasting insulin concentrations decreased significantly with increasing quintiles of the 5 serum carotenoids-alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein/zeaxanthin, and lycopene. Geometric mean concentrations for all serum carotenoids decreased (all decreases were significant except that of lycopene) with declining glucose tolerance status. beta-Carotene had the greatest decrease, to geometric means of 0.59, 0.50, and 0.42 mu mol/L in persons with normal glucose tolerance, impaired glucose metabolism, and type 2 diabetes, respectively (P < 0.01 for linear trend), after control for potential confounders. Conclusions: Serum carotenoids are inversely associated with type 2 diabetes and impaired glucose metabolism. Randomized trials of diets high in carotenoid-rich vegetables and fruit are needed to confirm these results and those from other observational studies. Such evidence would have very important implications for the prevention of diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep fat frying process is one of the widely followed cooking practices throughout the world. Cooking oils serve as a medium for frying food for transferring heat and makes fried food tasty and palatable. Frying process is a most complex process involving numerous physicochemical changes which are complicated to understand. Frying leads to thermal degradation of oil through thermo-oxidation, hydrolysis, and polymerization. Hydrolysis results in formation of free fatty acids whereas oxidation process produces hydroperoxides and small molecular carbonyl compounds. This whole process leads to the formation of polar compounds and degradation of antioxidants that further degrades frying oil. Eventually, through mass transfer process these degradation products accumulate into fried food and reduce the nutritional quality of both oil and food. Thus, the frying process is of research interest calls for detailed systematic study which is chosen for the present study. The primary objective of this study is to understand the mechanism of degradation and characterization ofdegraded products which helps in arriving at the limits for frying oil utilization in terms of number of frying cycles. The mechanistic studies and the knowledge on the degraded products help to understand the way to retard the deterioration of oil for stability and enhancement of frying cycles. The study also explores the formation of the predominant polar compounds and their structural elucidation through mass spectrometry. Oxidation of oil is another important factor that ignites the degradation phenomena. One of the best ways to increase thermal stability of any oil is addition of potent antioxidants. But, most of the natural and synthetic antioxidants are unstable and ineffective at frying temperatures. Therefore, it is necessary to screen alternative antioxidants for their activity in the refined oils which are devoid of any added antioxidants. In this context, this study discussed the efficacy of several natural and synthetic antioxidants to retard the formation of polar compounds and thermooxidation during prolonged frying conditions. Similarly, the advantage of blending of two different oils to improve the thermal stability was explored. The present study brings out the total picture on the type of degradation products formed during frying and the ways of retarding the determination to improve upon the stability of the oil and enhancement of frying cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies are accumulating that report the neuroprotective, cardioprotective, and chemopreventive actions of dietary flavonoids. While there has been a major focus on the antioxidant properties, there is an emerging view that flavonoids, and their in vivo metabolites, do not act as conventional hydrogen-donating antioxidants but may exert modulatory actions in cells through actions at protein kinase and lipid kinase signalling pathways. Flavonoids, and more recently their metabolites, have been reported to act at phosphoinositide 3-kinase (PI 3-kinase), Akt/protein kinase B (Akt/PKB), tyrosine kinases, protein kinase C (PKC), and mitogen activated protein kinase (MAP kinase) signalling cascades. Inhibitory or stimulatory actions at these pathways are likely to affect cellular function profoundly by altering the phosphorylation state of target molecules and by modulating gene expression. A clear understanding of the mechanisms of action of flavonoids, either as antioxidants or modulators of cell signalling, and the influence of their metabolism on these properties are key to the evaluation of these potent biomolecules as anticancer agents, cardioprotectants, and inhibitors of neurodegeneration (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Baccharis dracunculifolia DC (Asteraceae) is the main botanical source used by honeybees to produce Brazilian green propolis whose hepatoprotective properties have been already described. In this work we investigated the protective effects of the glycolic extract of B. dracunculifolia (GEBd) against oxidative stress in isolated rat liver mitochondria (RLM). The GEBd was prepared by fractionated percolation using propylene glycol as solvent. The total phenols and flavonoids, which are substances with recognized antioxidant action, were quantified in GEBd and the phytochemical analysis was carried out by HPLC. GEBd exhibited significant scavenger activity towards DPPH radicals and superoxide anions in a concentration-dependent manner, and also a Fe 2+ chelating activity. GEBd decreased the basal H 2O 2 generation and the Fe 2+- or t-BuOOH-induced ROS production in isolated mitochondria. Lipid oxidation of mitochondrial membranes, protein thiol groups and GSH oxidation were also prevented by GEBd. This shows that B. dracunculifolia exhibit potent antioxidant activity protecting liver mitochondria against oxidative damage and such action probably contribute to the antioxidant and hepatoprotective effects of green propolis. © 2011 Elsevier Ltd.