1000 resultados para Potamogeton crispus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the purpose of understanding the environmental fate of microcystins (MCs) and the potential health risks caused by toxic cyanobacterial blooms in Lake Taihu, a systematic investigation was carried out from February 2005 to January 2006. The distribution of MCs in the water column, and toxin bioaccumulations in aquatic organisms were surveyed. The results suggested that Lake Taihu is heavily polluted during summer months by toxic cyanobacterial blooms (with a maximum biovolume of 6.7 x 10(8) cells/L) and MCs. The maximum concentration of cell-bound toxins was 1.81 mg/g (DW) and the dissolved MCs reached a maximum level of 6.69 mu g/L. Dissolved MCs were always found in the entire water column at all sampling sites throughout the year. Our results emphasized the need for tracking MCs not only in the entire water column but also at the interface between water and sediment. Seasonal changes of MC concentrations in four species of hydrophytes (Eichhornic crassipes, Potamogeton maackianus, Alternanthera philoxeroides and Myriophyllum spicatum) ranged from 129 to 1317, 147 to 1534, 169 to 3945 and 124 to 956 ng/g (DW), respectively. Toxin accumulations in four aquatic species (Carassius auratus auratu, Macrobrachium nipponensis, Bellamya aeruginosa and Cristaria plicata) were also analyzed. Maximum toxin concentrations in the edible organs and non-edible visceral organs ranged from 378 to 730 and 754 to 3629 ng/g (DW), respectively. Based on field studies in Lake Taihu, risk assessments were carried out, taking into account the WHO guidelines and the tolerable daily intake (TDI) for MCs. Our findings suggest that the third largest lake in China poses serious health threats when serving as a source of drinking water and for recreational use. In addition, it is likely to be unsafe to consume aquatic species harvested in Lake Taihu due to the high-concentrations of accumulated MCs. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the current status of the small fish community in Niushan Lake in China, and examines the spatial and seasonal variations of the community in relation to key environmental factors. Based on macrophyte cover conditions, the lake was divided into three major habitat types: (1) Potamogeton maackianus habitat, (2) Potamogeton maackianus and Myriophyllum spicatum habitat, and (3) uncovered or less-covered habitat. Fish were sampled quantitatively in the three habitat types by block nets seasonally from September 2002 to August 2003. A total of 10 469 individuals from 27 fish species were caught, among which 20 species were considered as small fishes. Rhodeus ocellatus, Paracheilognathus imberbis, Pseudorasbora parva, Micropercops swinhonis and Cultrichthys erythropterus were recognized as dominant small fishes according to their abundance and occurrence. It was noted that (1) small fishes predominated the total number of fish species in the lake, which reflected to some degree the size diminution phenomenon of fish resources; (2) many small fishes had plant detritus as their food item, which was consistent with the abundance of macrophyte detritus in the lake and implied the importance of detritus in supporting small fish secondary production. Canonical correspondence analysis suggested that the spatial distributions of most small fishes were associated with complex macrophyte cover conditions. Macrophyte biomass was positively correlated with species richness, diversity index and the catch per unit of effort (CPUE) of the fish community. Water depth had no significant effects on species diversity and distribution of the small fishes. Correspondence analysis revealed a higher occurrence of the small fishes and higher abundance of individuals in summer and autumn. Seasonal length-frequency distributions of several species indicated that more larval and juvenile individuals appeared in spring and summer. This study provides some baseline information which will be essential to long-term monitoring of small fish communities in the Yangtze lakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the effect of different plant architecture types on epiphytic macroinvertebrates of a shallow macrophyte-dominated lake in China. Macroinvertebrates were sampled from four dominant submersed macrophytes in the lake - two dissected plants (Myriophyllum spicatum L. and Ceratophyllum demersum L.) and two undissected plants (Potamogeton maackianus A. Benn. and Vallisneria spiralis L.). Macro invertebrate richness showed significant differences among four submersed macrophyte habitats, and higher density per g of dry plant were associated with dissected plants than undissected plants. The average abundance in dissected plants was as three-six times as in undissected plants. The biodiversity of epiphytic macroinvertebrates was higher in dissected plants than undissected plants. Our results suggest that dissected plants provide different habitat for macroinvertebrates than dissected plant, and this concurs with the hypothesis that the former could support more epiphytic macroinvertebrates than the latter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with a case study of the restoration of submerged macrophytes for improving water quality in a hypertrophic shallow lake, Lake Donghu of Wuhan, Hubei Province, China. Macrophyte restoration experiments were conducted in large-scale enclosures established in three sublakes of different trophic status, and the effectiveness for water quality improvement was tested by using the enclosure experiment in the hypertrophic sublake. Water quality was remarkably improved after the reestablishment of aquatic macrophytes. It is suggested that the submerged vegetation of less polluted sublakes could be capable of recovering spontaneously once the stocking of herbivorous fishes has been ceased, and the K-selected plants such as Potamogeton maackianus should be introduced into these sublakes to enhance the stability of aquatic vegetation. However, it may not be possible and economical to restore the submerged macrophytes in severely polluted basins unless external pollution has been cut off and internal nutrient loadings considerably reduced. In this case, the r-selected submerged plants should be used as the pioneer species for macrophyte recovery. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Decline of submersed macrophytes in Lake Donghu of China with the progress of eutrophication is assumedly due to low light stress by algae blooming. I conducted a laboratory experiment to study the impact of low-light stress on the growth of Potamogeton maackianus A. Been, a dominant submersed macrophyte of the lake before the 1970s. Plants were grown for six weeks in aquaria with Lake Donghu sediment and enriched water. Light delivered to aquaria was adjusted to simulate the typical Lake Donghu light intensities that exist at several water depths from 0.6m to 1.7m. Biomass growth of the plant was inversely related to light intensity at the simulated depths of greater than or equal to 1.0m (r = 0.96, p < 0.05, n=6) and was negative at the depths of greater than or equal to 1.4m. These results indicate that photosynthetic light saturation and compensation points of the plant in Lake Donghu should be ca. 0,9m and ca. 1.5m depths, respectively. Chlorophyll content, growth of main shoot, total shoot lengths and density of the plant all peaked at 1.2-1.3m simulated depths. These results indicate that P. maackianus responds to low light stress primarily by elongation of shoots, and increase of density. Its biomass growth and nutrient uptake rate did not correlate with the accelerated shoot growth. Below the light intensities of water deeper than 1.2-1.3m, shoot growth rate decreased. The flexible tolerant strategy of P. maackianus to low-light stress suggests that the disappearance of this plant from the lake was not mainly due to eutrophication-induced low-light stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To initially describe vegetation structure and spatial variation in plant biomass in a typical alpine wetland of the Qinghai-Tibetan Plateau, net primary productivity and vegetation in relationship to environmental factors were investigated. In 2002, the wetland remained flooded to an average water depth of 25 cm during the growing season, from July to mid-September. We mapped the floodline and vegetation distribution using GPS (global positioning system). Coverage of vegetation in the wetland was 100%, and the vegetation was zonally distributed along a water depth gradient, with three emergent plant zones (Hippuris vulgaris-dominated zone, Scirpus distigmaticus-dominated zone, and Carex allivescers-dominated zone) and one submerged plant zone (Potamogeton pectinatus-dominated zone). Both aboveground and belowground biomass varied temporally within and among the vegetation zones. Further, net primary productivity (NPP) as estimated by peak biomass also differed among the vegetation zones; aboveground NPP was highest in the Carex-dominated zone with shallowest water and lowest in the Potamogeton zone with deepest water. The area occupied by each zone was 73.5% for P. pectinatus, 2.6% for H. vulgaris, 20.5% for S. distigmaticus, and 3.4% for C. allivescers. Morphological features in relationship to gas-transport efficiency of the aerial part differed among the emergent plants. Of the three emergent plants, H. vulgaris, which dominated in the deeper water, showed greater morphological adaptability to deep water than the other two emergent plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To initially characterize the dynamics and environmental controls of CO2, ecosystem CO2 fluxes were measured for different vegetation zones in a deep-water wetland on the Qinghai-Tibetan Plateau during the growing season of 2002. Four zones of vegetation along a gradient from shallow to deep water were dominated, respectively by the emergent species Carex allivescens V. Krez., Scirpus distigmaticus L., Hippuris vulgaris L., and the submerged species Potamogeton pectinatus L. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production (NEP) were markedly different among the vegetation zones, with lower Re and GPP in deeper water. NEP was highest in the Scirpus-dominated zone with moderate water depth, but lowest in the Potamogeton-zone that occupied approximately 75% of the total wetland area. Diurnal variation in CO2 flux was highly correlated with variation in light intensity and soil temperature. The relationship between CO2 flux and these environmental variables varied among the vegetation zones. Seasonal CO2 fluxes, including GPP, Re, and NEP, were strongly correlated with aboveground biomass, which was in turn determined by water depth. In the early growing season, temperature sensitivity (Q(10)) for Re varied from 6.0 to 8.9 depending on vegetation zone. Q(10) decreased in the late growing season. Estimated NEP for the whole deep-water wetland over the growing season was 24 g C m(-2). Our results suggest that water depth is the major environmental control of seasonal variation in CO2 flux, whereas photosynthetic photon flux density (PPFD) controls diurnal dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured methane (CH4) emissions in the Luanhaizi wetland, a typical alpine wetland on the Qinghai-Tibetan Plateau, China, during the plant growth season (early July to mid-September) in 2002. Our aim was to quantify the spatial and temporal variation of CH4 flux and to elucidate key factors in this variation. Static chamber measurements of CH4 flux were made in four vegetation zones along a gradient of water depth. There were three emergent-plant zones (Hippuris-dominated; Scirpus-dominated; and Carex-dominated) and one submerged-plant zone (Potamogeton-dominated). The smallest CH4 flux (seasonal mean = 33.1 mg CH4 m(-2) d(-1)) was, observed in the Potamogeton-dominated zone, which occupied about 74% of the total area of the wetland. The greatest CH4 flux (seasonal mean = 214 mg CH4 m(-2) d(-1)) was observed in the Hippuris-dominated zone, in the second-deepest water area. CH4 flux from three zones (excluding the Carex-dominated zone) showed a marked diurnal change and decreased dramatically under dark conditions. Light intensity had a major influence on the temporal variation in CH4 flux, at least in three of the zones. Methane fluxes from all zones increased during the growing season with increasing aboveground biomass. CH4 flux from the Scirpus-dominated zone was significantly lower than in the other emergent-plant zones despite the large biomass, because the root and rhizome intake ports for CH4 transport in the dominant species were distributed in shallower and more oxidative soil than occupied in the other zones. Spatial and temporal variation in CH4 flux from the alpine wetland was determined by the vegetation zone. Among the dominant species in each zone, there were variations in the density and biomass of shoots, gas-transport system, and root-rhizome architecture. The CH4 flux from a typical alpine wetland on the Qinghai-Tibetan Plateau was as high as those of other boreal and alpine wetlands. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las inundaciones y el pastoreo son disturbios importantes que modulan la estructura y el funcionamiento de pastizales húmedos. La inundación genera un ambiente anaeróbico en el suelo, disminuyendo la disponibilidad de oxígeno para las raíces, mientras que el pastoreo afecta a la vegetación mediante la defoliación selectiva del forraje. En primer lugar se investigaron los rasgos anatómicos y las respuestas fisiológicas relacionadas con el crecimiento bajo anaerobiosis de raíces de graminoides (Paspalidium geminatum, Cyperus eragrostis) y dicotiledóneas (Lotus tenuis, Rumex crispus) con distintos tipos de aerénquima. Se encontró que las graminoides mantienen la tasa de elongación de sus raíces bajo anaerobiosis, con alta proporción de aerénquima para conducir oxígeno y una barrera física (menor suberina) - constitutiva en P. geminatum e inducida en C. eragrostis - que limita la pérdida radial de oxígeno hacia la rizósfera. Por el contrario, las dicotiledóneas disminuyen la elongación radical en medio anaeróbico, a pesar de incrementar el aerénquima en sus raíces, asociado a una alta pérdida radial de oxígeno y una menor deposición de suberina en la corteza radical externa. En segundo lugar, se estudiaron las estrategias de crecimiento de L. tenuis y P. dilatatum bajo condiciones de sumersión parcial y completa de sus plantas (i.e. intensidad de inundación), con énfasis en el uso de carbohidratos de reserva. Se demostró que L. tenuis puede desarrollar dos estrategias de crecimiento: 'escape' del agua bajo sumersión parcial sin usar sus reservas y sobrevivir 30 días en estado de 'quiescencia' bajo sumersión completa utilizando sus reservas. Por el contrario, P. dilatatum sólo desarrolla 'escape' bajo sumersión parcial y no tolera (muere) la sumersión completa. En tercer lugar, se evaluaron las respuestas de L. tenuis y P. dilatatum frente a la combinación inundación/frecuencia de defoliación. Aquí se encontró que L. tenuis tolera los eventos sucesivos de defoliación bajo inundación, con un mínimo crecimiento, a partir de priorizar la emergencia de las hojas fuera del agua post-corte, utilizando exhaustivamente las reservas en coronas. Por el contrario, P. dilatatum no sobrevive a dos defoliaciones si se encuentra bajo anegamiento. De esta manera, si bien ambas especies toleran la inundación y la defoliación por separado, si estos estreses se combinan se compromete la supervivencia de la gramínea y el rebrote de la leguminosa. En consecuencia, resulta importante considerar el tiempo entre defoliaciones sucesivas, si el suelo está inundado, al momento de planificar las estrategias de manejo de estas especies en el pastizal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macroalgae (seaweeds) are a promising feedstock for the production of third generation bioethanol, since they have high carbohydrate contents, contain little or no lignin and are available in abundance. However, seaweeds typically contain a more diverse array of monomeric sugars than are commonly present in feedstocks derived from lignocellulosic material which are currently used for bioethanol production. Hence, identification of a suitable fermentative microorganism that can utilise the principal sugars released from the hydrolysis of macroalgae remains a major objective. The present study used a phenotypic microarray technique to screen 24 different yeast strains for their ability to metabolise individual monosaccharides commonly found in seaweeds, as well as hydrolysates following an acid pre-treatment of five native UK seaweed species (Laminaria digitata, Fucus serratus, Chondrus crispus, Palmaria palmata and Ulva lactuca). Five strains of yeast (three Saccharomyces spp, one Pichia sp and one Candida sp) were selected and subsequently evaluated for bioethanol production during fermentation of the hydrolysates. Four out of the five selected strains converted these monomeric sugars into bioethanol, with the highest ethanol yield (13 g L−1) resulting from a fermentation using C. crispus hydrolysate with Saccharomyces cerevisiae YPS128. This study demonstrated the novel application of a phenotypic microarray technique to screen for yeast capable of metabolising sugars present in seaweed hydrolysates; however, metabolic activity did not always imply fermentative production of ethanol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global climate change is having a significant effect on the distributions of a wide variety of species, causing both range shifts and population extinctions. To date, however, no consensus has emerged on how these processes will affect the range-wide genetic diversity of impacted species. It has been suggested that species that recolonized from low-latitude refugia might harbour high levels of genetic variation in rear-edge populations, and that loss of these populations could cause a disproportionately large reduction in overall genetic diversity in such taxa. In the present study, we have examined the distribution of genetic diversity across the range of the seaweed Chondrus crispus, a species that has exhibited a northward shift in its southern limit in Europe over the last 40 years. Analysis of 19 populations from both sides of the North Atlantic using mitochondrial single nucleotide polymorphisms (SNPs), sequence data from two singlecopy nuclear regions and allelic variation at eight microsatellite loci revealed unique genetic variation for all marker classes in the rear-edge populations in Iberia, but not in the rear-edge populations in North America. Palaeodistribution modelling and statistical testing of alternative phylogeographic scenarios indicate that the unique genetic diversity in Iberian populations is a result not only of persistence in the region during the last glacial maximum, but also because this refugium did not contribute substantially to the recolonization of Europe after the retreat of the ice. Consequently, loss of these rear-edge populations as a result of ongoing climate change will have a major effect on the overall genetic diversity of the species, particularly in Europe, and this could compromise the adaptive potential of the species as a whole in the face of future global warming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La question de recherche à la base de cette étude soulève le point de la nature paradoxale du canon de représentation égyptien qui démontre, simultanément, une certaine rigidité dans l’application de règles stylistiques et iconographiques établies, particulièrement dans l’art non commandité par l’État, et des preuves de transformation et d’intégration de motifs nouveaux. Partant de cette problématique, l’étude vise à identifier les mécanismes par lesquels ce canon permet, à la fois, l’innovation et le maintien d’une certaine tradition. L’approche est de nature double et consiste tout d’abord à identifier de grandes tendances et discontinuités stylistiques et iconographiques sur les bols de faïence du Moyen au Nouvel Empire. De plus, elle tente de déterminer si les transformations d’ordre sociopolitique et idéologique, survenant à ces périodes, peuvent être lues dans les variations stylistiques et iconographiques trouvées sur les bols de faïence. Après une description du champ conceptuel de la « représentation » en contexte égyptien, l’auteur effectue l’analyse iconographique exhaustive de ce qui constitue l’apport majeur de son étude, un corpus de 500 bols et fragments de faïence provenant de divers sites égyptiens du Moyen au Nouvel Empire. Les données ont été traitées par le biais de la méthode d’analyse iconologique proposée par Panofsky, qui lui permet de dévoiler un grand nombre de continuités et de transformations d’ordre stylistique et iconographique pour les différentes périodes. Plusieurs facteurs semblent avoir été à l’origine de ces transformations, dont la fluctuation entre un contexte de centralisation et de décentralisation politique de l’État, ainsi que l’intégration de motifs étrangers (proche-orientaux et égéens) résultant d’un contact accru entre l’Égypte et les régions voisines. De plus, les transformations idéologiques apportées par le règne d’Akhénaton et par la « contre-réforme » idéologique à la période ramesside, semblent avoir également contribué à des innovations au sein du canon, même si ce dernier maintient une certaine continuité légitimée par le pouvoir étatique. Le canon de représentation, devient ainsi une forme de langage dont l’État se sert et qui, parfois malgré lui, se transforme et fluctue selon les réalités des différentes périodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intermittent wetlands are particularly at risk from secondary salinisation because salts are concentrated during drawdown. We conducted a field experiment to examine the effect of adding salt at two different concentrations (to achieve nominal conductivities of 1000 μS cm–1 (low salt) and 3000 μS cm–1 (high salt)) on water quality, freshwater plants and epiphytic diatoms in an intermittent wetland during a 3.3-month drawdown. Conductivity increased to 3000 and 8500 μS cm–1 in low-salt and high-salt treatments respectively. Salt was apparently lost to the sediments, causing protons to be released from the sediments and reducing water column pH from 6.9 to 5.5 in the low-salt treatment and to 4.0 in the high-salt treatments. Forty days after adding the salt, biomass, %cover and flower production in Potamogeton cheesmanii were significantly reduced, whereas Amphibromus fluitans was not significantly affected. The salt effect on Triglochin procera was intermediate between the other two macrophytes. Significant reductions in the density, species richness and diversity of epiphytic diatoms occurred in the high-salt, but not in the low-salt, treatments. Our work shows that increases in salinity, and thus conductivity (up to 8500 μS cm–1), in low-alkalinity intermittent wetlands can change water quality, with significant adverse effects on some macrophyte and diatom communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At least two distinct trade-offs are thought to facilitate higher diversity in productive plant communities under herbivory. Higher investment in defence and enhanced colonization potential may both correlate with decreased competitive ability in plants. Herbivory may thus promote coexistence of plant species exhibiting divergent life history strategies. How different seasonally tied herbivore assemblages simultaneously affect plant community composition and diversity is, however, largely unknown. Two contrasting types of herbivory can be distinguished in the aquatic vegetation of the shallow lake Lauwersmeer. In summer, predominantly above-ground tissues are eaten, whereas in winter, waterfowl forage on below-ground plant propagules. In a 4-year exclosure study we experimentally separated above-ground herbivory by waterfowl and large fish in summer from below-ground herbivory by Bewick’s swans in winter. We measured the individual and combined effects of both herbivory periods on the composition of the three-species aquatic plant community. Herbivory effect sizes varied considerably from year to year. In 2 years herbivore exclusion in summer reinforced dominance of Potamogeton pectinatus with a concomitant decrease in Potamogeton pusillus, whereas no strong, unequivocal effect was observed in the other 2 years. Winter exclusion, on the other hand, had a negative effect on Zannichellia palustris, but the effect size differed considerably between years. We suggest that the colonization ability of Z. palustris may have enabled this species to be more abundant after reduction of P. pectinatus tuber densities by swans. Evenness decreased due to herbivore exclusion in summer. We conclude that seasonally tied above- and below-ground herbivory may each stimulate different components of a macrophyte community as they each favoured a different subordinate plant species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degree to which vertebrate herbivores exploitatively compete for the same food plant may depend on the level of compensatory plant growth. Such compensation is higher when there is reduced density-dependent competition in plants after herbivore damage. Whether there is relief from competition may largely be determined by the life-history stage of plants under herbivory. Such stage-specific compensation may apply to seasonal herbivory on the clonal aquatic plant sago pondweed (Potamogeton pectinatus L.). It winters in sediments of shallow lakes as tubers that are foraged upon by Bewick's Swans (Cygnus columbianus bewickii Yarrell), whereas aboveground biomass in summer is mostly consumed by ducks, coots, and Mute Swans. Here, tuber predation may be compensated due to diminished negative density dependence in the next growth season. However, we expected lower compensation to summer herbivory by waterfowl and fish as density of aboveground biomass in summer is closely related to photosynthetic carbon fixation. In a factorial exclosure study we simultaneously investigated (1) the effect of summer herbivory on aboveground biomass and autumn tuber biomass and (2) the effect of tuber predation in autumn on aboveground biomass and tuber biomass a year later. Summer herbivory strongly influenced belowground tuber biomass in autumn, limiting food availability to Bewick's Swans. In contrast, tuber predation in autumn by Bewick's Swans had a limited and variable effect on P. pectinatus biomass in the following growth season. Whereas relief from negative density dependence largely eliminates effects of belowground herbivory by swans, aboveground herbivory in summer limits both above- and belowground plant biomass. Hence, there was an asymmetry in exploitative competition, with herbivores in summer reducing food availability for belowground herbivores in autumn, but not the other way around.