5 resultados para Pot1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Telomeres, the natural ends of chromosomes, need to be protected from chromosome end fusions, aberrant homologous recombination and degradation. In humans, chromosome ends are specified through arrays of tandemly repeated 5'-TTAGGG-3' hexamers, ending in a 3' overhang. A complex formed by the six proteins TRF1, TRF2, hRap1, TIN2, TPP1 and POT1 specifically assocìates with and protects telomeres. Telomeres are maintained by semiconservative DNA replication and by a specialized reverse transcriptase, telomerase, that carries an RNA subunit which templates new telomeric repeat synthesis. The telomeric single stranded (ss) DNA binding protein POT1 protects the telomeric 3' overhang and modulates telomerase-mediated telomere elongation. It is possible that POT1 also influences DNA synthesis during semiconservative DNA replication, which is initiated by the DNA polymerase alpha-primase complex. The heterotrimeric ss DNA-binding protein RPA plays essential roles during DNA replication. RPA binds to ss DNA with high affinity in order to stabilize ss DNA and facilitate nascent strand synthesis at the replication fork. Here we investigate how the two proteins RPA and POT1 contribute to telomere maintenance by regulating semi-conservative DNA replication and telomerase. Using chromatin immunoprecipitation experiments, we show that RPA associates with telomeres during S-phase. Analysis of telomere structure in cells shRNA-depleted for RPA and POT1 reveals that loss of RPA and POT1 causes exposure of single-stranded DNA at telomeres, suggestive of incomplete DNA replication. Biochemical experiments using purified recombinant POT1 and RPA show that saturating telomeric oligonucleotides with POT1 or RPA reduces the primase activity of the DNA polymerase alpha-primase complex and the overall activity of telomerase. POT1 and RPA also increase the primer extension by DNA polymerase alpha-primase complex and the processivity of telomerase under certain conditions, although POT1 increases the activities to a greater extent than RPA. We propose that POT1 is required for proper replication of the lagging strand of telomeres and that some phenotypes observed in POT1-depleted cells may stern from incomplete DNA replication rather than de-protection of the single-stranded overhang. Résumé Les télomères, les extrémités normales des chromosomes linéaires, doivent être protégés des fusions chromosomiques, d'événements de recombinaison homologue aberrants et de phénomènes de dégradation. Chez l'Homme, les extrémités des chromosomes sont constitués d'ADN double brin répétitif de séquence 5'-TTAGGG-3', d'une extension simple brin 3' sortante et d'un complexe protéique formé des six facteurs TRF1, TRF2, hRap1, TIN2, TPP1 et POT1 qui, s'associant à cette séquence, protègent l'ADN télomèrique. Les télomères sont maintenus par la télomérase, une transcriptase inverse capable d'allonger l'extension 3' sortante télomérique. POT1 lie l'ADN simple brin télomérique et module l'élongation des télomères par la télomérase. POT1 pourrait en théorie également influencer la réplication semi-conservative de l'ADN. L'ADN-polymérase Pal alpha-primase amorce et initie la synthèse d'ADN. Pendant la réplication, l'ADN simple brin est stabilisé par RPA, un complexe hétérotrimèrique qui lie l'ADN simple brin. RPA facilite la synthèse du brin naissant à la fourche de réplication. Ici nous avons étudié comment ces deux protéines qui lient l'ADN simple brin, RPA et POT1, régulent la réplication des télomères par la télomérase et la machinerie classique de réplication de l'ADN. Par immunoprécipitation de chromatine (ChIP), nous montrons que RPA est localisé aux télomères lors de la phase S du cycle cellulaire. De plus, l'analyse de la structure des télomeres indique que !a perte de RPA ou de POT1 conduit à l'apparition d'ADN simple brin télomérique, suggérant une réplication incomplète de l'ADN télomérique in vivo. Par une approche complémentaire biochimique utilisant les protéines POT1 et RPA recombinantes purifiées, nous montrons également que la liaison de POT1 ou de RPA à des oligonucléotides télomériques bloque l'activité primase du complexe polymérase alpha/primase et réduit l'activité télomérase sur ces substrats. En revanche, leur liaison augmente l'activité ADN-polymérase du complexe polymérase alpha/primase, ainsi que fa processivité de la télomérase dans certaines conditions, POT1 étant le plus efficace des deux facteurs. Nous proposons que POT1 est nécessaire à la réplication du brin retardé au niveau des télomères, ce qui suggère que certains phénotypes des cellules déplétés en POT1 puissent résulter d'une réplication incomplète de l'ADN télémétrique plutôt que d'une déprotection de l'extrémité sortante des télomères.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colorectal cancer is a complex disease that is thought to arise when cells accumulate mutations that allow for uncontrolled growth. There are several recognized mechanisms for generating such mutations in sporadic colon cancer; one of which is chromosomal instability (CIN). One hypothesized driver of CIN in cancer is the improper repair of dysfunctional telomeres. Telomeres comprise the linear ends of chromosomes and play a dual role in cancer. Its length is maintained by the ribonucleoprotein, telomerase, which is not a normally expressed in somatic cells and as cells divide, telomeres continuously shorten. Critically shortened telomeres are considered dysfunctional as they are recognized as sites of DNA damage and cells respond by entering into replicative senescence or apoptosis, a process that is p53-dependent and the mechanism for telomere-induced tumor suppression. Loss of this checkpoint and improper repair of dysfunctional telomeres can initiate a cycle of fusion, bridge and breakage that can lead to chromosomal changes and genomic instability, a process that can lead to transformation of normal cells to cancer cells. Mouse models of telomere dysfunction are currently based on knocking out the telomerase protein or RNA component; however, the naturally long telomeres of mice require multiple generational crosses of telomerase null mice to achieve critically short telomeres. Shelterin is a complex of six core proteins that bind to telomeres specifically. Pot1a is a highly conserved member of this complex that specifically binds to the telomeric single-stranded 3’ G-rich overhang. Previous work in our lab has shown that Pot1a is essential for chromosomal end protection as deletion of Pot1a in murine embryonic fibroblasts (MEFs) leads to open telomere ends that initiate a DNA damage response mediated by ATR, resulting in p53-dependent cellular senescence. Loss of Pot1a in the background of p53 deficiency results in increased aberrant homologous recombination at telomeres and elevated genomic instability, which allows Pot1a-/-, p53-/- MEFs to form tumors when injected into SCID mice. These phenotypes are similar to those seen in cells with critically shortened telomeres. In this work, we created a mouse model of telomere ysfunction in the gastrointestinal tract through the conditional deletion of Pot1a that recapitulates the microscopic features seen in severe telomere attrition. Combined intestinal loss of Pot1a and p53 lead to formation of invasive adenocarcinomas in the small and large intestines. The tumors formed with long latency, low multiplicity and had complex genomes due to chromosomal instability, features similar to those seen in sporadic human colorectal cancers. Taken together, we have developed a novel mouse model of intestinal tumorigenesis based on genomic instability driven by telomere dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ends of eukaryotic chromosomes are protected by specialized ribonucleoprotein structures termed telomeres. Telomeres protect chromosomes from end-to-end fusions, inappropriate repair and degradation. Disruption of this complex activates an ATM/ATR DNA damage response (DDR) pathway. One component of the complex is the Protection Of Telomeres 1 (POT1) protein, an evolutionarily conserved protein which binds single-stranded 3' overhang and is required for both chromosomal end protection and telomere length regulation. The mouse contains two POT1 orthologs, Pot1a and Pot1b. Here we show that both proteins colocalize with telomeres through interaction with the adapter protein TPP1. In addition, compared to Pot1a, the OB-folds of Pot1b possess less sequence specificity for telomeres. Disruption of POT1 proteins result in telomere dysfunction and activation of an ATR-dependent DDR at telomeres, suggesting that this response is normally suppressed by POT1 binding to the single-stranded G-overhang. ^ Telomeres are maintained by telomerase, and its absence in somatic cells results in telomere progressive loss that triggers the activation of p53. Telomere dysfunction initiates genomic instability and induces both p53-dependent replicative senescence and apoptosis to suppress tumorigenesis. In the absence of functional p53, this genomic instability promotes cancer. It was previously not known which aspect of the p53 dependent DNA damage response is important to suppress tumorigenesis initiated by dysfunctional telomeres. The p53R172P knock-in mouse, which is unable to induce apoptosis but retains intact cell cycle arrest/cellular senescence pathways, allowed us to examine whether p53-dependent apoptosis is a major tumor suppression pathway initiated in the setting of telomere dysfunction. Spontaneous tumorigenesis remains potently suppressed in late generation telomerase null mice possessing the p53P/P mutation. These results suggest that suppression of spontaneous tumorigenesis initiated by dysfunctional telomeres requires activation of a p53-dependent senescence pathway. In addition, we used another knock-in mouse model with a p53R172H (p53H) point mutation to test the hypothesis that telomere dysfunction promotes chromosomal instability and accelerates the onset of tumorigenesis in vivo in the setting of this most common gain-of-function mutation in the human Li Fraumeni cancer syndrome. We unexpectedly observed that telomerase null mice possessing dysfunctional telomeres in the setting of the p53H/+ mutation develop significantly fewer tumors, die prematurely and exhibit higher level of cellular senescence, apoptosis and elevated genomic instability compared to telomerase intact p53H/+ and telomerase null p53+/+ mice. These contrasting results thus link cancer and aging to the functional status of telomeres and the integrity of the p53 pathway. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BRCA1 is a tumor suppressor that functions in controlling cell growth and maintaining genomic stability. BRCA1 has also been implicated in telomere maintenance through its ability to regulate the transcription of hTERT, the catalytic subunit of telomerase, resulting in telomere shortening, and to colocalize with the telomere-binding protein TRF1. The high incidence of nonreciprocal translocations in tumors arising from BRCA1 mutation carriers and Brca1-null mice also raises the possibility that BRCA1 plays a role in telomere protection. To date, however, the consequences for telomere status of disrupting BRCA1 have not been reported. To examine the role of BRCA1 in telomere regulation, we have expressed a dominant-negative mutant of BRCA1 (trBRCA1), known to disrupt multiple functions of BRCA1, in telomerase-positive mammary epithelial cells (SVCT) and telomerase-negative ALT cells (GM847). In SVCT cells, expression of trBRCA1 resulted in an increased incidence of anaphase bridges and in an increase in telomere length, but no change in telomerase activity. In GM847 cells, trBRCA1 also increased anaphase bridge formation but did not induce any change in telomere length. BRCA1 colocalized with TRF2 in telomerase-positive cells and with a small subset of ALT-associated PML bodies (APBs) in ALT cells. Together, these results raise the possibility that BRCA1 could play a role in telomere protection and suggest a potential mechanism for one of the phenotypes of BRCA1 deficient cells. (c) 2005 Wiley-Liss, Inc.