908 resultados para Posterior Parietal Cortex
Resumo:
The present work takes into account three posterior parietal areas, V6, V6A, and PEc, all operating on different subsets of signals (visual, somatic, motor). The work focuses on the study of their functional properties, to better understand their respective contribution in the neuronal circuits that make possible the interactions between subject and external environment. In the caudalmost pole of parietal lobe there is area V6. Functional data suggest that this area is related to the encoding of both objects motion and ego-motion. However, the sensitivity of V6 neurons to optic flow stimulations has been tested only in human fMRI experiments. Here we addressed this issue by applying on monkey the same experimental protocol used in human studies. The visual stimulation obtained with the Flow Fields stimulus was the most effective and powerful to activate area V6 in monkey, further strengthening this homology between the two primates. The neighboring areas, V6A and PEc, show different cytoarchitecture and connectivity profiles, but are both involved in the control of reaches. We studied the sensory responses present in these areas, and directly compared these.. We also studied the motor related discharges of PEc neurons during reaching movements in 3D space comparing also the direction and depth tuning of PEc cells with those of V6A. The results show that area PEc and V6A share several functional properties. Area PEc, unlike V6A, contains a richer and more complex somatosensory input, and a poorer, although complex visual one. Differences emerged also comparing the motor-related properties for reaches in depth: the incidence of depth modulations in PEc and the temporal pattern of modulation for depth and direction allow to delineate a trend among the two parietal visuomotor areas.
Resumo:
Two fMRI experiments explored the neural substrates of a musical imagery task that required manipulation of the imagined sounds: temporal reversal of a melody. Musicians were presented with the first few notes of a familiar tune (Experiment 1) or its title (Experiment 2), followed by a string of notes that was either an exact or an inexact reversal. The task was to judge whether the second string was correct or not by mentally reversing all its notes, thus requiring both maintenance and manipulation of the represented string. Both experiments showed considerable activation of the superior parietal lobe (intraparietal sulcus) during the reversal process. Ventrolateral and dorsolateral frontal cortices were also activated, consistent with the memory load required during the task. We also found weaker evidence for some activation of right auditory cortex in both studies, congruent with results from previous simpler music imagery tasks. We interpret these results in the context of other mental transformation tasks, such as mental rotation in the visual domain, which are known to recruit the intraparietal sulcus region, and we propose that this region subserves general computations that require transformations of a sensory input. Mental imagery tasks may thus have both task or modality-specific components as well as components that supersede any specific codes and instead represent amodal mental manipulation.
Resumo:
The right posterior parietal cortex (PPC) is critically involved in visual exploration behaviour, and damage to this area may lead to neglect of the left hemispace. We investigated whether neglect-like visual exploration behaviour could be induced in healthy subjects using theta burst repetitive transcranial magnetic stimulation (rTMS). To this end, one continuous train of theta burst rTMS was applied over the right PPC in 12 healthy subjects prior to a visual exploration task where colour photographs of real-life scenes were presented on a computer screen. In a control experiment, stimulation was also applied over the vertex. Eye movements were measured, and the distribution of visual fixations in the left and right halves of the screen was analysed. In comparison to the performance of 28 control subjects without stimulation, theta burst rTMS over the right PPC, but not the vertex, significantly decreased cumulative fixation duration in the left screen-half and significantly increased cumulative fixation duration in the right screen-half for a time period of 30 min. These results suggest that theta burst rTMS is a reliable method of inducing transient neglect-like visual exploration behaviour.
Resumo:
The present study investigated the role of the right posterior parietal cortex (PPC) in the triggering of memory-guided saccades by means of double-pulse transcranial magnetic stimulation (dTMS). Shortly before saccade onset, dTMS with different interstimulus intervals (ISI; 35, 50, 65 or 80 ms) was applied. For contralateral saccades, dTMS significantly decreased saccadic latency with an ISI of 80 ms and increased saccadic gain with an ISI of 65 and 80 ms. Together with the findings of a previous study during frontal eye field (FEF) stimulation the present results demonstrate similarities and differences between both regions in the execution of memory-guided saccades. Firstly, dTMS facilitates saccade triggering in both regions, but the timing is different. Secondly, dTMS over the PPC provokes a hypermetria of contralateral memory-guided saccades that was not observed during FEF stimulation. The results are discussed within the context of recent neurophysiological findings in monkeys.
Resumo:
When briefly presented with pairs of words, skilled readers can sometimes report words with migrated letters (e.g., they report hunt when presented with the words hint and hurt). These letter migration phenomena have been often used to investigate factors that influence reading such as letter position coding. However, the neural basis of letter migration is poorly understood. Previous evidence has implicated the right posterior parietal cortex (PPC) in processing visuospatial attributes and lexical properties during word reading. The aim of this study was to assess this putative role by combining an inhibitory TMS protocol with a letter migration paradigm, which was designed to examine the contributions of visuospatial attributes and lexical factors. Temporary interference with the right PPC led to three specific effects on letter migration. First, the number of letter migrations was significantly increased only in the group with active stimulation (vs. a sham stimulation group or a control group without stimulation), and there was no significant effect on other error types. Second, this effect occurred only when letter migration could result in a meaningful word (migration vs. control context). Third, the effect of active stimulation on the number of letter migrations was lateralized to target words presented on the left. Our study thus demonstrates that the right PPC plays a specific and causal role in the phenomenon of letter migration. The nature of this role cannot be explained solely in terms of visuospatial attention, rather it involves an interplay between visuospatial attentional and word reading-specific factors.
Resumo:
Human ability to switch from one cognitive task to another involves both endogenous preparation without an external stimulus and exogenous adjustment in response to the external stimulus. In an event-related functional MRI study, participants performed pairs of two tasks that are either the same (task repetition) or different (task switch) from each other. On half of the trials, foreknowledge about task repetition or task switch was available. On the other half, it was not. Endogenous preparation seems to involve lateral prefrontal cortex (BA 46/45) and posterior parietal cortex (BA 40). During preparation, higher activation increases in inferior lateral prefrontal cortex and superior posterior parietal cortex were associated with foreknowledge than with no foreknowledge. Exogenous adjustment seems to involve superior prefrontal cortex (BA 8) and posterior parietal cortex (BA 39/40) in general. During a task switch with no foreknowledge, activations in these areas were relatively higher than during a task repetition with no foreknowledge. These results suggest that endogenous preparation and exogenous adjustment for a task switch may be independent processes involving different brain areas.
Resumo:
Locomoting through the environment typically involves anticipating impending changes in heading trajectory in addition to maintaining the current direction of travel. We explored the neural systems involved in the “far road” and “near road” mechanisms proposed by Land and Horwood (1995) using simulated forward or backward travel where participants were required to gauge their current direction of travel (rather than directly control it). During forward egomotion, the distant road edges provided future path information, which participants used to improve their heading judgments. During backward egomotion, the road edges did not enhance performance because they no longer provided prospective information. This behavioral dissociation was reflected at the neural level, where only simulated forward travel increased activation in a region of the superior parietal lobe and the medial intraparietal sulcus. Providing only near road information during a forward heading judgment task resulted in activation in the motion complex. We propose a complementary role for the posterior parietal cortex and motion complex in detecting future path information and maintaining current lane positioning, respectively. (PsycINFO Database Record (c) 2010 APA, all rights reserved)
Resumo:
OBJECTIVE Neuro-imaging studies have suggested that the ability to imitate meaningless and meaningful gestures may differentially depend on superior (SPL) and inferior (IPL) parietal lobule. Therefore, we hypothesized that imaging-guided neuro-navigated continuous theta burst stimulation (cTBS) over left SPL mainly affects meaningless and over left IPL predominantly meaningful gestures. METHODS Twelve healthy subjects participated in this study. High resolution structural MRI was used for imaging guided neuro-navigation cTBS. Participants were targeted with one train of cTBS in three experimental sessions: sham stimulation over vertex and real cTBS over left SPL and IPL, respectively. An imitation task, including 24 meaningless and 24 meaningful gestures, was performed 'offline'. RESULTS cTBS over both left IPL and SPL significantly interfered with gestural imitation. There was no differential effect of SPL and IPL cTBS on gesture type (meaningless versus meaningful). CONCLUSIONS Our findings confirm that left posterior parietal cortex plays a predominant role in gestural imitation. However, the hypothesis based on the dual route model suggesting a differential role of SPL and IPL in the processing of meaningless and meaningful gestures could not be confirmed. SIGNIFICANCE Left SPL and IPL play a common role within the posterior-parietal network in gestural imitation regardless of semantic content.
Resumo:
The 'attentional blink' (AB) reflects a limitation in the ability to identify multiple items in a stream of rapidly presented information. Repetitive transcranial magnetic stimulation (rTMS), applied to a site over the right posterior parietal cortex, reduced the magnitude of the AB to visual stimuli, whilst no effect of rTMS was found when stimulation took place at a control site. The data confirm that the posterior parietal cortex may play a critical role in temporal as well as spatial aspects of visual attention.
Resumo:
Sensory-motor circuits course through the parietal cortex of the human and monkey brain. How parietal cortex manipulates these signals has been an important question in behavioral neuroscience. This thesis presents experiments that explore the contributions of monkey parietal cortex to sensory-motor processing, with an emphasis on the area's contributions to reaching. First, it is shown that parietal cortex is organized into subregions devoted to specific movements. Area LIP encodes plans to make saccadic eye movements. A nearby area, the parietal reach region (PRR), plans reaches. A series of experiments are then described which explore the contributions of PRR to reach planning. Reach plans are represented in an eye-centered reference frame in PRR. This representation is shown to be stable across eye movements. When a sequence of reaches is planned, only the impending movement is represented in PRR, showing that the area is more related to movement planning than to storing the memory of reach targets. PRR resembles area LIP in each of these properties: the two areas may provide a substrate for hand-eye coordination. These findings yield new perspectives on the functions of the parietal cortex and on the organization of sensory-motor processing in primate brains.
Resumo:
In the last decade, research efforts into directly interfacing with the neurons of individuals with motor deficits have increased. The goal of such research is clear: Enable individuals affected by paralysis or amputation to regain control of their environments by manipulating external devices with thought alone. Though the motor cortices are the usual brain areas upon which neural prosthetics depend, research into the parietal lobe and its subregions, primarily in non-human primates, has uncovered alternative areas that could also benefit neural interfaces. Similar to the motor cortical areas, parietal regions can supply information about the trajectories of movements. In addition, the parietal lobe also contains cognitive signals like movement goals and intentions. But, these areas are also known to be tuned to saccadic eye movements, which could interfere with the function of a prosthetic designed to capture motor intentions only. In this thesis, we develop and examine the functionality of a neural prosthetic with a non-human primate model using the superior parietal lobe to examine the effectiveness of such an interface and the effects of unconstrained eye movements in a task that more closely simulates clinical applications. Additionally, we examine methods for improving usability of such interfaces.
The parietal cortex is also believed to contain neural signals relating to monitoring of the state of the limbs through visual and somatosensory feedback. In one of the world’s first clinical neural prosthetics based on the human parietal lobe, we examine the extent to which feedback regarding the state of a movement effector alters parietal neural signals and what the implications are for motor neural prosthetics and how this informs our understanding of this area of the human brain.
Resumo:
This research is focused on the contribution of area 7 to the short-term visual spatial memory. Three rhesus monkeys (Macaca mulatta) were trained in the direct delayed response task in which 5 delay intervals were used in each session. When each monkey reached the criterion of 90% correct responses in 5 successive sessions, two monkeys underwent a surgery while the other one received a sham operation as a control. In the first stage of the surgery, bilateral areas 7a, 7b and 7ip of the parietal cortex of two monkeys were precisely lesioned. After 7 days of recuperation, the monkeys were required to do the same task. The average percentage of correct responses in the lesioned animals decreased from 94.7% to 89.3% and 93.3% to 82.0% respectively (no significance, P > 0.05, n = 2). In addition, the monkeys' complex movements were mildly impaired. The lesioned monkeys were found to have difficulty picking up food from the wells. In the second stage, bilateral area 7m was lesioned. In the 5 postoperative sessions, the average percentage of correct responses in one monkey, with a relatively precise 7m lesion, decreased from 94.7% to 92.2% (no significance, P > 0.05), while the other monkey, with widely spread necrosis of lateral parietal cortex, showed an. obvious decline in performance, but still over the chance level. After 240 trials this monkey reattained the normal criterion. The results of this research suggest that the lesions of area 7 of the parietal cortex did not significantly affect the short-term visual spatial memory, which has been shown to be sensitive to lesions of the prefrontal cortex; they also support the notion of dissociation of spatial functions in the prefrontal and parietal cortices.
Resumo:
Posterior parietal cortex (PPC) constitutes a critical cortical node in the sensorimotor system in which goal-directed actions are computed. This information then must be transferred into commands suitable for hand movements to the primary motor cortex (M1). Complexity arises because reach-to-grasp actions not only require directing the hand towards the object (transport component), but also preshaping the hand according to the features of the object (grip component). Yet, the functional influence that specific PPC regions exert over ipsilateral M1 during the planning of different hand movements remains unclear in humans. Here we manipulated transport and grip components of goal-directed hand movements and exploited paired-pulse transcranial magnetic stimulation (ppTMS) to probe the functional interactions between M1 and two different PPC regions, namely superior parieto-occipital cortex (SPOC) and the anterior region of the intraparietal sulcus (aIPS), in the left hemisphere. We show that when the extension of the arm is required to contact a target object, SPOC selectively facilitates motor evoked potentials, suggesting that SPOC-M1 interactions are functionally specific to arm transport. In contrast, a different pathway, linking the aIPS and ipsilateral M1, shows enhanced functional connections during the sensorimotor planning of grip. These results support recent human neuroimaging findings arguing for specialized human parietal regions for the planning of arm transport and hand grip during goal-directed actions. Importantly, they provide new insight into the causal influences these different parietal regions exert over ipsilateral motor cortex for specific types of planned hand movements
Resumo:
Humans typically make several rapid eye movements (saccades) per second. It is thought that visual working memory can retain and spatially integrate three to four objects or features across each saccade but little is known about this neural mechanism. Previously we showed that transcranial magnetic stimulation (TMS) to the posterior parietal cortex and frontal eye fields degrade trans-saccadic memory of multiple object features (Prime, Vesia, & Crawford, 2008, Journal of Neuroscience, 28(27), 6938-6949; Prime, Vesia, & Crawford, 2010, Cerebral Cortex, 20(4), 759-772.). Here, we used a similar protocol to investigate whether dorsolateral prefrontal cortex (DLPFC), an area involved in spatial working memory, is also involved in trans-saccadic memory. Subjects were required to report changes in stimulus orientation with (saccade task) or without (fixation task) an eye movement in the intervening memory interval. We applied single-pulse TMS to left and right DLPFC during the memory delay, timed at three intervals to arrive approximately 100ms before, 100ms after, or at saccade onset. In the fixation task, left DLPFC TMS produced inconsistent results, whereas right DLPFC TMS disrupted performance at all three intervals (significantly for presaccadic TMS). In contrast, in the saccade task, TMS consistently facilitated performance (significantly for left DLPFC/perisaccadic TMS and right DLPFC/postsaccadic TMS) suggesting a dis-inhibition of trans-saccadic processing. These results are consistent with a neural circuit of trans-saccadic memory that overlaps and interacts with, but is partially separate from the circuit for visual working memory during sustained fixation.