987 resultados para Post-buckling strength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of experimental and numerical studies on the shear behaviour of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB). The LSB sections are produced by a patented manufacturing process involving simultaneous cold-forming and electric resistance welding. It has a unique shape of a channel beam with two rectangular hollow flanges. Recent research has demonstrated the presence of increased shear capacity of LSBs due to the additional fixity along the web to flange juncture, but the current design rules ignore this effect. Therefore they were modified by including a higher elastic shear buckling coefficient. In the present study, the ultimate shear capacity results obtained from the experimental and numerical studies of 10 different LSB sections were compared with the modified shear capacity design rules. It was found that they are still conservative as they ignore the presence of post-buckling strength. Therefore the design rules were further modified to include the available post-buckling strength. Suitable design rules were also developed under the direct strength method format. This paper presents the details of this study and the results including the final design rules for the shear capacity of LSBs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assembling aircraft stiffened panels using friction stir welding offers potential to reduce fabrication time in comparison to current mechanical fastener assembly, making it economically feasible to select structurally desirable stiffener pitching and novel panel configurations. With such a departure from the traditional fabrication process, much research has been conducted on producing strong reliable welds, with less examination of the impact of welding process residual effects on panel structural behaviour and the development of appropriate design methods. This article significantly expands the available panel level compressive strength knowledge, demonstrating the strength potential of a welded aircraft panel with multiple lateral and longitudinal stiffener bays. An accompanying computational study has determined the most significant process residual effects that influence panel strength and the potential extent of panel degradation. The experimental results have also been used to validate a previously published design method, suggesting accurate predictions can be made if the conventional aerospace design methods are modified to acknowledge the welding altered panel properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flexural capacity of of a new cold-formed hollow flange channel section known as LiteSteel beam (LSB) is limited by lateral distortional buckling for intermediate spans, which is characterised by simultaneous lateral deflection, twist and web distortion. Recent research has developed suitable design rules for the member capacity of LSBs. However, they are limited to a uniform moment distribution that rarely exists in practice. Many steel design codes have adopted equivalent uniform moment distribution factors to accommodate the effect of non-uniform moment distributions in design. But they were derived mostly based on the data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The effect of moment distribution for LSBs, and the suitability of the current steel design code rules to include this effect for LSBs are not yet known. This paper presents the details of a research study based on finite element analyses of the lateral buckling strength of simply supported LSBs subject to moment gradient effects. It also presents the details of a number of LSB lateral buckling experiments undertaken to validate the results of finite element analyses. Finally, it discusses the suitability of the current design methods, and provides design recommendations for simply supported LSBs subject to moment gradient effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of an investigation on the shear behaviour of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB).The LSB section has a unique shape of a channel beam with two rectangular hollow flanges and is produced by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. In the present investigation, a series of numerical analyses based on three-dimensional finite element modeling and an experimental study were carried out to investigate the shear behaviour of 10 different LSB sections. It was found that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LiteSteel beams. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Therefore the design rules were further modified to include the available post-buckling strength. Suitable design rules were also developed under the direct strength method format. This paper presents the details of this investigation and the results including the final design rules for the shear capacity of LSBs. It also presents new shear strength formulae for lipped channel beams based on the current design equations for shear strength given in AISI (2007) using the same approach used for LSBs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam. The unique LSB section is produced by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. To date, limited research has been undertaken on the shear buckling behaviour of LSBs with torsionally rigid, rectangular hollow flanges. For the shear design of LSB web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the flange and web elements. Therefore finite element analyses were carried out to investigate the elastic shear buckling behaviour of LSB sections including the effect of true support conditions at the junction between their flange and web elements. An improved equation for the higher elastic shear buckling coefficient of LSBs was developed and included in the shear capacity equations of Australian cold-formed steel codes. Predicted ultimate shear capacity results were compared with available experimental results, both of which showed considerable improvement to the shear capacities of LSBs. A study on the shear flow distribution of LSBs was also undertaken prior to the elastic buckling analysis study. This paper presents the details of this investigation and the results including the shear flow distribution of LSBs. Keywords: LiteSteel beam, Elastic shear buckling, Shear flow, Cold-formed steel structures, Slender web, Hollow flanges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of an experimental study on the shear behaviour and strength of a recently developed, cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB). The new LSB sections with rectangular hollow flanges are produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. They are commonly used as flexural members in buildings. However, no research has been undertaken on the shear behaviour of LSBs. Therefore a detailed experimental study involving 36 shear tests was undertaken to investigate the shear behaviour of 10 different LSB sections. Simply supported test specimens of LSBs with aspect ratios of 1.0 and 1.5 were loaded at midspan until failure using both single and back to back LSB arrangements. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. Comparison of experimental results with corresponding predictions from the current Australian and North American cold-formed steel design rules showed that the current design rules are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Appropriate improvements have been proposed for the shear strength of LSBs based on the design equations in the North American Specification. This paper presents the details of this experimental study and the results. When reduced height web side plates or only one web side plate was used, the shear capacity of LSB was reduced. Details of these tests and the results are also presented in this paper. Keywords: LiteSteel beam, Shear strength, Shear tests, Cold-formed steel structures, Direct strength method, Slender web, Hollow flanges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: The LiteSteel Beam (LSB) is a new cold-formed hollow flange channel section produced using dual electric resistance welding and automated continuous roll-forming technologies. The innovative LSB sections have many beneficial characteristics and are commonly used as flexural members in building construction. However, limited research has been undertaken on the shear behaviour of LSBs. Therefore a detailed investigation including both numerical and experimental studies was undertaken to investigate the shear behaviour of LSBs. Finite element models of LSBs in shear were developed to simulate the nonlinear ultimate strength behaviour of LSBs including their elastic buckling characteristics, and were validated by comparing their results with experimental test results. Validated finite element models were then used in a detailed parametric study into the shear behaviour of LSBs. The parametric study results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of torsionally rigid rectangular hollow flanges while considerable post-buckling strength was also observed. This paper therefore proposes improved shear strength design rules for LSBs within the current cold-formed steel code guidelines. It presents the details of the parametric study and the new shear strength equations. The new equations were also developed based on the direct strength method. The proposed shear strength equations have the potential to be used with other conventional cold-formed steel sections such as lipped channel sections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. For the shear design of LCB web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of LCB web panels are determined by assuming conservatively that the web panels are simply supported at the junction between their flange and web elements. Hence finite element analyses were conducted to investigate the elastic shear buckling behavior of LCBs. An improved equation for the higher elastic shear buckling coefficient of LCBs was proposed based on finite element analysis results and included in the ultimate shear capacity equations of the North American cold-formed steel codes. Finite element analyses show that relatively short span LCBs without flange restraints are subjected to a new combined shear and flange distortion action due to the unbalanced shear flow. They also show that significant post-buckling strength is available for LCBs subjected to shear. New equations were also proposed in which post-buckling strength of LCBs was included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the direct strength method (DSM) equations for cold-formed steel beams subject to shear. Light gauge cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold-formed lipped channel beams (LCB), LiteSteel beams (LSB) and hollow flange beams (HFB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. For the shear design of cold-formed web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the flange and web elements and ignore the post-buckling strength. Hence experimental and numerical studies were conducted to investigate the shear behaviour and strength of LSBs, LCBs and HFBs. New direct strength method (DSM) based design equations were proposed to determine the ultimate shear capacities of cold-formed steel beams. An improved equation for the higher elastic shear buckling coefficient of cold-formed steel beams was proposed based on finite element analysis results and included in the DSM design equations. A new post-buckling coefficient was also introduced in the DSM equation to include the available post-buckling strength of cold-formed steel beams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of experimental studies on the shear behaviour and strength of lipped channel beams (LCBs). The LCB sections are commonly used as flexural members in residential, industrial and commercial buildings. To ensure safe and efficient designs of LCBs, many research studies have been undertaken on the flexural behaviour of LCBs. To date, however, limited research has been conducted into the strength of LCB sections subject to shear actions. Therefore a detailed experimental study involving 20 tests was undertaken to investigate the shear behaviour and strength of LCBs. This research has shown the presence of increased shear capacity of LCBs due to the additional fixity along the web to flange juncture, but the current design rules (AS/NZS 4600 and AISI) ignore this effect and were thus found to be conservative. Therefore they were modified by including a higher elastic shear buckling coefficient. Ultimate shear capacity results obtained from the shear tests were compared with the modified shear capacity design rules. It was found that they are still conservative as they ignore the presence of post-buckling strength. Hence the AS/NZS 4600 and AISI design rules were further modified to include the available post-buckling strength. Suitable design rules were also developed under the direct strength method (DSM) format. This paper presents the details of this study and the results including the modified shear design rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of static and cyclic-static tri-axial compression tests under consolidated-undrained conditions are carried out to study the characteristics of post-cyclic strength of the undisturbed and the remolded samples of marine silty clay. It is found that the post-cyclic monotonic strength decreases if the cyclic strain or pore pressure is over a certain value. The maximum degradation is 10% for undisturbed samples while 70% for remolded ones. The relationship between normalized undrained shear strength and apparent overconsolidation ratio, which is determined by the excess pore pressure induced by cyclic loading, is also established. Static consolidated-undrained tests on overconsolidated remolded samples are also performed. It is proposed that the static consolidated-undrained tests may be substituted for the cyclic-static consolidated-undrained tests if the post-cyclic strength degradation of remolded silty clay is needed to be evaluated simply.