952 resultados para Possible worlds semantics
Resumo:
Transreal arithmetic is total, in the sense that the fundamental operations of addition, subtraction, multiplication and division can be applied to any transreal numbers with the result being a transreal number [1]. In particular division by zero is allowed. It is proved, in [3], that transreal arithmetic is consistent and contains real arithmetic. The entire set of transreal numbers is a total semantics that models all of the semantic values, that is truth values, commonly used in logics, such as the classical, dialetheaic, fuzzy and gap values [2]. By virtue of the totality of transreal arithmetic, these logics can be implemented using total, arithmetical functions, specifically operators, whose domain and counterdomain is the entire set of transreal numbers
Resumo:
In this dissertation we present a model for iteration of Katsuno and Mendelzon’s Update, inspired in the developments for iteration in AGM belief revision. We adapt Darwiche and Pearls’ postulates of iterated belief revision to update (as well as the independence postulate proposed in [BM06, JT07]) and show two families of such operators, based in natural [Bou96] and lexicographic revision [Nay94a, NPP03]. In all cases, we provide a possible worlds semantics of the models.
Resumo:
La logique contemporaine a connu de nombreux développements au cours de la seconde moitié du siècle dernier. Le plus sensationnel est celui de la logique modale et de sa sémantique des mondes possibles (SMP) dû à Saul Kripke dans les années soixante. Ces dans ce cadre que David Lewis exposera sa sémantique des contrefactuels (SCF). Celle-ci constitue une véritable excroissance de l’architecture kripkéenne. Mais sur quoi finalement repose l’architecture kripkéenne elle-même ? Il semble bien que la réponse soit celle d’une ontologie raffinée ultimement basée sur la notion de mondes possible. Ce mémoire comporte quatre objectifs. Dans un premier temps, nous allons étudier ce qui distingue les contrefactuels des autres conditionnels et faire un survol historique de la littérature concernant les contrefactuels et leur application dans différent champs du savoir comme la philosophie des sciences et l’informatique. Dans un deuxième temps, nous ferons un exposé systématique de la théorie de Lewis telle qu’elle est exposée dans son ouvrage Counterfactuals. Finalement, nous allons explorer la fondation métaphysique des mondes possible de David Lewis dans son conception de Réalisme Modal.
Resumo:
The one which is considered the standard model of theory change was presented in [AGM85] and is known as the AGM model. In particular, that paper introduced the class of partial meet contractions. In subsequent works several alternative constructive models for that same class of functions were presented, e.g.: safe/kernel contractions ([AM85, Han94]), system of spheres-based contractions ([Gro88]) and epistemic entrenchment-based contractions ([G ar88, GM88]). Besides, several generalizations of such model were investigated. In that regard we emphasise the presentation of models which accounted for contractions by sets of sentences rather than only by a single sentence, i.e. multiple contractions. However, until now, only two of the above mentioned models have been generalized in the sense of addressing the case of contractions by sets of sentences: The partial meet multiple contractions were presented in [Han89, FH94], while the kernel multiple contractions were introduced in [FSS03]. In this thesis we propose two new constructive models of multiple contraction functions, namely the system of spheres-based and the epistemic entrenchment-based multiple contractions which generalize the models of system of spheres-based and of epistemic entrenchment-based contractions, respectively, to the case of contractions (of theories) by sets of sentences. Furthermore, analogously to what is the case in what concerns the corresponding classes of contraction functions by one single sentence, those two classes are identical and constitute a subclass of the class of partial meet multiple contractions. Additionally, and as the rst step of the procedure that is here followed to obtain an adequate de nition for the system of spheres-based multiple contractions, we present a possible worlds semantics for the partial meet multiple contractions analogous to the one proposed in [Gro88] for the partial meet contractions (by one single sentence). Finally, we present yet an axiomatic characterization for the new class(es) of multiple contraction functions that are here introduced.
Resumo:
In this dissertation we present a model for iteration of Katsuno and Mendelzon’s Update, inspired in the developments for iteration in AGM belief revision. We adapt Darwiche and Pearls’ postulates of iterated belief revision to update (as well as the independence postulate proposed in [BM06, JT07]) and show two families of such operators, based in natural [Bou96] and lexicographic revision [Nay94a, NPP03]. In all cases, we provide a possible worlds semantics of the models.
Resumo:
The thesis that entities exist in, at, or in relation to logically possible worlds is criticized. The suggestion that actually nonexistent fictional characters might nevertheless exist in nonactual merely logically possible worlds runs afoul of the most general transworld identity requirements. An influential philosophical argument for the concept of world-relativized existence is examined in Alvin Plantinga’s formal development and explanation of modal semantic relations. Despite proposing an attractive unified semantics of alethic modality, Plantinga’s argument is rejected on formal grounds as supporting materially false actual existence assertions in the case of actually nonexistent objects in the framework of Plantinga’s own underlying classical predicate-quantificational logic.
Resumo:
In [8] the authors developed a logical system based on the definition of a new non-classical connective ⊗ capturing the notion of reparative obligation. The system proved to be appropriate for handling well-known contrary-to-duty paradoxes but no model-theoretic semantics was presented. In this paper we fill the gap and define a suitable possible-world semantics for the system for which we can prove soundness and completeness. The semantics is a preference-based non-normal one extending and generalizing semantics for classical modal logics.
Resumo:
In this paper I will offer a novel understanding of a priori knowledge. My claim is that the sharp distinction that is usually made between a priori and a posteriori knowledge is groundless. It will be argued that a plausible understanding of a priori and a posteriori knowledge has to acknowledge that they are in a constant bootstrapping relationship. It is also crucial that we distinguish between a priori propositions that hold in the actual world and merely possible, non-actual a priori propositions, as we will see when considering cases like Euclidean geometry. Furthermore, contrary to what Kripke seems to suggest, a priori knowledge is intimately connected with metaphysical modality, indeed, grounded in it. The task of a priori reasoning, according to this account, is to delimit the space of metaphysically possible worlds in order for us to be able to determine what is actual.
Resumo:
Incidence calculus is a mechanism for probabilistic reasoning in which sets of possible worlds, called incidences, are associated with axioms, and probabilities are then associated with these sets. Inference rules are used to deduce bounds on the incidence of formulae which are not axioms, and bounds for the probability of such a formula can then be obtained. In practice an assignment of probabilities directly to axioms may be given, and it is then necessary to find an assignment of incidence which will reproduce these probabilities. We show that this task of assigning incidences can be viewed as a tree searching problem, and two techniques for performing this research are discussed. One of these is a new proposal involving a depth first search, while the other incorporates a random element. A Prolog implementation of these methods has been developed. The two approaches are compared for efficiency and the significance of their results are discussed. Finally we discuss a new proposal for applying techniques from linear programming to incidence calculus.
Resumo:
Necessary and sufficient conditions for choice functions to be rational have been intensively studied in the past. However, in these attempts, a choice function is completely specified. That is, given any subset of options, called an issue, the best option over that issue is always known, whilst in real-world scenarios, it is very often that only a few choices are known instead of all. In this paper, we study partial choice functions and investigate necessary and sufficient rationality conditions for situations where only a few choices are known. We prove that our necessary and sufficient condition for partial choice functions boils down to the necessary and sufficient conditions for complete choice functions proposed in the literature. Choice functions have been instrumental in belief revision theory. That is, in most approaches to belief revision, the problem studied can simply be described as the choice of possible worlds compatible with the input information, given an agent’s prior belief state. The main effort has been to devise strategies in order to infer the agents revised belief state. Our study considers the converse problem: given a collection of input information items and their corresponding revision results (as provided by an agent), does there exist a rational revision operation used by the agent and a consistent belief state that may explain the observed results?