991 resultados para Positive Tempertaure Coefficient Resistivity
Resumo:
Low temperature sintering has become a very important research area in ceramics processing and sintering as a promising process to obtain grain size below 100nm. For electronic ceramics, low temperature sintering is particularly difficult, because not only the required microstructure but also the desired electronic properties should be obtained. In this dissertation, the effect of liquid sintering aids and particle size (micrometer and nanometer) on sintering temperature and Positive Temperature Coefficient Resistivity (PTCR) property are investigated for Ba1-xSrxTiO3 (BST) doped with 0.2-0.3mol% Sb3+ (x = 0.1,0.2,0.3,0.4 and 0.5). Different sintering aids with low melting point are used as sintering aids to decrease the sintering temperature for micrometer size BST particles. Micrometer size and nanometer size Ba1-xSrxTiO3 (BST) particles are used to demonstrate the particle size effect on the sintering temperature for semiconducting BST. To reduce the sintering temperature, three processes are developed, i.e. 1 using sol-gel nanometer size Sb3+ doped powders with a sintering aid; 2 using micrometer size powders plus a sintering aid; and 3 using nanometer size Sb3+ doped powders with sintering aids. Grain size effect on PTCR characteristics is investigated through comparison between micrometer size powder sintered pellets and nanometer size powder sintered pellets. The former has lower resistivity at temperatures below the Curie temperature (Tc) and high resistivity at temperatures above the Curie temperature (Tc) along with higher ñmax/ñmin ratio (ñmax is the highest resistivity at temperatures above Tc, ñmin is the lowest resistivity at temperatures below Tc), whereas the latter has both higher ñmax and ñmin. Also, ñmax/ñmin is smaller than that of pellets with larger grain size. The reason is that the solid with small grain size has more grain boundaries than the solid with large grain size. The contribution z at room temperature and high temperature and a lower ñmax/ñmin ratio value.
Resumo:
The presently developed two-stage process involves diping the prefired porous disks of n-BaTiO3 in nonaqueous solutions containing Al-buty rate, Ti-isopropoxide, and tetraethyl silicate and subsequent sintering. This leads to uniform distribution of the grain-boundary layer (GBL) modifiers (Al2O3+ TiO2+ SiO2) and better control of the grain size as well as the positive temperature coefficient of resistivity characteristics. The technique is particularly suited for GBL modifiers in low concentrations (< 1%).
Resumo:
Donor-doped n-(Ba,Pb)TiO3 polycrystalline ceramics exhibit distinctly two-step positive temperature coefficient of resistance (PTCR) characteristics when formulated with suitable combinations of B2O3 and Al2O3 as grain boundary modifiers by heterogeneous addition. B2O3 or Al2O3 when added singularly resulted in either steep or broad PTCR jumps respectively across the phase transition. The two-step PTCR is attributed to the activation of the acceptor states, created through B2O3 and Al2O3, for various temperature regimes above the Curie point (T-c). The changing pattern of trap states is evident from the presence of Ti4+-O--Al3+ type hole centres in the grain boundary layer regions, identified in the electron paramagnetic resonance (EPR) spectra. That charge redistribution occurs among the inter-band gap defect states on crossing the Curie temperature is substantiated by the temperature coefficient in the EPR results. Capacitance-voltage results clearly show that there is an increase in the density of trap states with the addition of B2O3 and Al2O3. The spread in energy values of these trap states is evident from the large change in barrier height (phi similar or equal to 0.25-0.6 eV) between 500 and 650 K.
Resumo:
The dispersion state of multiwall carbon nanotubes (MWNTs) in melt mixed polyethylene/polyethylene oxide (PE/PEO) blends has been assessed by both surface and volume electrical conductivity measurements and the structural relaxations have been assessed by broadband dielectric spectroscopy. The selective localization of MWNTs in the blends was controlled by the flow characteristics of the components, which led to their localization in the energetically less favored phase (PE). The electrical conductivity and positive temperature co-efficient (PTC) measurements were carried out on hot pressed samples. The neat blends exhibited only a negative temperature coefficient (NTC) effect while the blends with MWNTs exhibited both a PTC and a NTC at the melting temperatures of PE and PEO respectively. These phenomenal changes were corroborated with the different crystalline morphology in the blends. It was deduced that during compression molding, the more viscous PEO phase spreads less in contrast to the less viscous PE phase. This has further resulted in a gradient in morphology as well as the distribution state of the MWNTs in the samples and was supported by scanning electron and scanning acoustic microscopy (SAM) studies and contact angle measurements. SAM from different depths of the samples revealed a gradient in the microstructure in the PE/PEO blends which is contingent upon the flow characteristics of the components. Interestingly, the surface and volume electrical conductivity was different due to the different dispersion state of the MWNTs at the surface and bulk. The observed surface and volume electrical conductivity measurements were corroborated with the evolved morphology during processing. The structural relaxations in both PE and PEO were discerned from broadband dielectric spectroscopy. The segmental dynamics below and above the melting temperature of PEO were significantly different in the presence of MWNTs.
Resumo:
Low temperature sintering has become a very important research area in ceramics processing and sintering as a promising process to obtain grain size below 100nm. For electronic ceramics, low temperature sintering is particularly difficult, because not only the required microstructure but also the desired electronic properties should be obtained. In this dissertation, the effect of liquid sintering aids and particle size (micrometer and nanometer) on sintering temperature and Positive Temperature Coefficient Resistivity (PTCR) property are investigated for Ba1-xSrxTiO3 (BST) doped with 0.2-0.3mol% Sb3+ (x = 0.1, 0.2, 0.3, 0.4 and 0.5). Different sintering aids with low melting point are used as sintering aids to decrease the sintering temperature for micrometer size BST particles. Micrometer size and nanometer size Ba1-xSrxTiO 3 (BST) particles are used to demonstrate the particle size effect on the sintering temperature for semiconducting BST. To reduce the sintering temperature, three processes are developed, i.e. 1 using sol-gel nanometer size Sb3+ doped powders with a sintering aid; 2 using micrometer size powders plus a sintering aid; and 3 using nanometer size Sb3+ doped powders with sintering aids. Grain size effect on PTCR characteristics is investigated through comparison between micrometer size powder sintered pellets and nanometer size powder sintered pellets. The former has lower resistivity at temperatures below the Curie temperature (Tc) and high resistivity at temperatures above the Curie temperature (Tc) along with higher ρ max/ρmin ratio (ρmax is the highest resistivity at temperatures above Tc, ρmin is the lowest resistivity at temperatures below Tc), whereas the latter has both higher ρ max and ρmin. Also, ρmax/ρmin is smaller than that of pellets with larger grain size. The reason is that the solid with small grain size has more grain boundaries than the solid with large grain size. The contribution z at room temperature and high temperature and a lower ρmax/ρmin ratio value.
Resumo:
The Hall coefficient and resistance in several specimens of an amorphous metallic alloy containing 80 at.% palladium and 20 at.% silicon have been investigated at temperatures between 4.2°K and room temperature. An ideal limiting behavior of these transport coefficients was analyzed on the basis of the nearly free electron model to yield a carrier density of 9 x 1022 cm.-3, or about 1.7 electrons per palladium atom, and a mean free path of about 9Å which is almost constant with temperature. The deviations of the individual specimens from this ideal behavior, which were small but noticeable in the relative resistivity and much greater in the Hall coefficient, can be explained by invoking disk-shaped crystalline regions with low resistivity and a positive Hall coefficient. A detailed calculation shows how a volume fraction of such crystalline material too small to be noticed in X-ray diffraction could have a significant effect on the resistivity and a much greater effect on the Hall coefficient.
Resumo:
Electrical resistivity of bulk amorphous Al23T77 samples has been studied as a function of pressure (up to 80 kbar) and temperature (down to 77 K). At atmospheric pressure the temperature dependence of resistivity obeys the relation = π0 exp(δE/RT) with two activation energies. In the temperature range 300 K T > 234 K the activation energy is 0.58 eV and for 234 >T 185 K the value is δE = 0.30 ev. The activation energy has been measured as a function of pressure. The electrical resistivity decreases exponentially with the increase of pressure and at 70 kbar pressure the electrical behaviour of the sample shows a metallic nature with a positive temperature coefficient. The high pressure phase of the sample is found to be a crystalline hexagonal phase.
Resumo:
Composites with carbon nanotubes are becoming increasingly used in energy storage and electronic devices, due to incorporated excellent properties from carbon nanotubes and polymers. Although their properties make them more attractive than conventional smart materials, their electrical properties are found to be temperature-dependent which is important to consider for the design of devices. To study the effects of temperature in electrically conductive multi-wall carbon nanotube/epoxy composites, thin films were prepared and the effect of temperature on the resistivity, thermal properties and Raman spectral characteristics of the composite films was evaluated. Resistivity-temperature profiles showed three distinct regions in as-cured samples and only two regions in samples whose thermal histories had been erased. In the vicinity of the glass transition temperature, the as-cured composites exhibited pronounced resistivity and enthalpic relaxation peaks, which both disappeared after erasing the composites’ thermal histories by temperature cycling. Combined DSC, Raman spectroscopy, and resistivity-temperature analyses indicated that this phenomenon can be attributed to the physical aging of the epoxy matrix and that, in the region of the observed thermal history-dependent resistivity peaks, structural rearrangement of the conductive carbon nanotube network occurs through a volume expansion/relaxation process. These results have led to an overall greater understanding of the temperature-dependent behaviour of conductive carbon nanotube/epoxy composites, including the positive temperature coefficient effect.
Resumo:
The resistivity of selenium-doped n-InP single crystal layers grown by liquid-phase epitaxy with electron concentrations varying from 6.7 x 10$^18$ to 1.8 x 10$^20$ cm$^{-3}$ has been measured as a function of hydrostatic pressure up to 10 GPa. Semiconductor-metal transitions were observed in each case with a change in resistivity by two to three orders of magnitude. The transition pressure p$_c$ decreased monotonically from 7.24 to 5.90 GPa with increasing doping concentration n according to the relation $p_c = p_o [1 - k(n/n_m)^a]$, where n$_m$ is the concentration (per cubic centimetre) of phosphorus donor sites in InP atoms, p$_o$ is the transition pressure at low doping concentrations, k is a constant and $\alpha$ is an exponent found experimentally to be 0.637. The decrease in p$_c$ is considered to be due to increasing internal stress developed at high concentrations of ionized donors. The high-pressure metallic phase had a resistivity (2.02-6.47) x 10$^{-7}$ $\Omega$ cm, with a positive temperature coefficient dependent on doping.
Resumo:
The semiconductivity inMTiO3 (M=Ba, Sr) in the temperature range of practical applications is greatly influenced by the electronic charge redistribution among the acceptor states, arising from the frozen cation vacancies as well as the transition metal ion impurities. The conductivity measurements and defect chemistry investigations above 800 K indicate that the predominant lattice defects areM− and oxygen vacancies. There is dominantp-type conduction at higherP O 2 values in acceptor doped materials at high temperatures. However, they are insulating solids around room temperature due to the redistribution of electrons between the neutral, singly-or doubly-ionised acceptor states. Results fromepr and resistivity measurements show that the above charge redistribution is dependent on crystal structure changes. Hence the electron or hole loss by the acceptor states is influenced by the soft modes which also accounts for the differences in electrical properties of BaTiO3 and SrTiO3. The results are also useful in explaining the positive temperature coefficient in resistance and some photo-electrochemcial properties of these solids.
Resumo:
Bi3+ ions substituting at Ba-sites in a limited concentration range with another donor dopant occupying the Ti-sites in polycrystalline BaTiO3 enhanced the positive temperature coefficient of resistance (PTCR) by over seven orders of magnitude. These ceramics did not require normal post sinter annealing or a change to an oxygen atmosphere during annealing. These ceramics had low porosities coupled with better stabilities to large applied electric fields and chemically reducing atmospheres. Bi3+ ions limited the grain growth to less than 8 mum in size, they enhanced the concentration of acceptor-type trap centres at the grain-boundary-layer regions and maintained complete tetragonality at low grain sizes in BaTiO3 ceramics.
Resumo:
The strikingly different charge transport behaviours in nanocomposites of multiwall carbon nanotubes (MWNTs) and conducting polymer polyethylenedioxythiophene-polystyrene-sulfonic-acid (PEDOT-PSS) at low temperatures are explained by probing their conformational properties using small-angle x-ray scattering (SAXS). The SAXS studies indicate the assembly of elongated PEDOT-PSS globules on the walls of nanotubes, coating them partially, thereby limiting the interaction between the nanotubes in the polymer matrix. This results in a charge transport governed mainly by small polarons in the conducting polymer despite the presence of metallic MWNTs. At T > 4 K, hopping of the charge carriers following one-dimensional variable range hopping is evident which also gives rise to a positive magnetoresistance (MR) with an enhanced localization length (similar to 5 nm) due to the presence of MWNTs. However, at T < 4 K, the observation of an unconventional positive temperature coefficient of resistivity is attributed to small polaron tunnelling. The exceptionally large negative MR observed in this temperature regime is conjectured to be due to the presence of quasi-1D MWNTs that can aid in lowering the tunnelling barrier across the nanotube-polymer boundary resulting in large delocalization.
Resumo:
Skutterudites Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized by induction melting at 1273 K, followed by annealing at 923 K for 144 h. X-ray powder diffraction and electron microprobe analysis confirmed the presence of the skutterudite phase as the main phase. The temperature-dependent transport properties were measured for all the samples from 300 to 818 K. A positive Seebeck coefficient (holes are majority carriers) was obtained in Fe0.2Co3.8Sb 12 in the whole temperature range. Thermally excited carriers changed from n-type to p-type in Fe(0.)2Co(3.8)Sb(12),Te-x 19Te0.1 at 570 K, while in all the other samples, Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0.2, 0.3, 0.4, 0.5, 0.6) exhibited negative Seebeck coefficients in the entire temperature range measured. Whereas for the alloys up to x = 0.2 (Fe(0.)2Co(3.8)Sb(12),Te-x ) the electrical resistivity decreased by charge compensation, it increased for x> 0.2 with an increase in Te content as a result of an increase in the electron concentration. The thermal conductivity decreased with Te substitution owing to carrier phonon scattering and point defect scattering. The maximum dimensionless thermoelectric figure of merit, ZT = 1.04 at 818 K, was obtained with an optimized Te content for Fe0.2Co3.8Sb1 1.5Te0.5 and a carrier concentration of,,J1/ =- 3.0 x 1020 CM-3 at room temperature. Thermal expansion (a = 8.8 x 10-6 K-1), as measured for Fe(0.)2Co(3.8)Sb(12),Te-x , compared well with that of undoped Co4Sb12. A further increase in the thermoelectric figure of merit up to ZT = 1.3 at 820 K was achieved for Fe(0.)2Co(3.8)Sb(12),Te-x , applying severe plastic deformation in terms of a high-pressure torsion process. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Cu2Ge1-xInxSe3 (x = 0, 0.05, 0.1, 0.15) compounds were prepared by a solid state synthesis. The powder X-ray diffraction pattern of the undoped sample revealed an orthorhombic phase. The increase in doping content led to the appearance of additional peaks related to cubic and tetragonal phases along with the orthorhombic phase. This may be due to the substitutional disorder created by Indium doping. Scanning Electron Microscopy micrographs showed a continuous large grain growth with low porosity, which confirms the compaction of the samples after hot pressing. Elemental composition was measured by Electron Probe Micro Analyzer and confirmed that all the samples are in the stoichiometric ratio. The electrical resistivity (rho) systematically decreased with an increase in doping content, but increased with the temperature indicating a heavily doped semiconductor behavior. A positive Seebeck coefficient (S) of all samples in the entire temperature range reveal holes as predominant charge carriers. Positive Hall coefficient data for the compounds Cu2InxGe1-xSe3 (x = 0, 0.1) at room temperature (RT) confirm the sign of Seebeck coefficient. The trend of rho as a function of doping content for the samples Cu2InxGe1-xSe3 with x = 0 and 0.1 agrees with the measured charge carrier density calculated from Hall data. The total thermal conductivity increased with rising doping content, attributed to an increase in carrier thermal conductivity. The thermal conductivity revealed 1/T dependence, which indicates the dominance of Umklapp phonon scattering at elevated temperatures. The maximum thermoelectric figure of merit (ZT) = 0.23 at 723 K was obtained for Cu2In0.1Ge0.9Se3. (C)2014 Elsevier Ltd. All rights reserved.
Resumo:
Zn doped ternary compounds Cu2ZnxSn1-xSe3 (x = 0, 0.025, 0.05, 0.075) were prepared by solid state synthesis. The undoped compound showed a monoclinic crystal structure as a major phase, while the doped compounds showed a cubic crystal structure confirmed by powder XRD (X-Ray Diffraction). The surface morphology and elemental composition analysis for all the samples were studied by SEM (Scanning Electron Microscopy) and EPMA (Electron Probe Micro Analyzer), respectively. SEM micrographs of the hot pressed samples showed the presence of continuous and homogeneous grains confirming sufficient densification. Elemental composition of all the samples revealed an off-stoichiometry, which was determined by EPMA. Transport properties were measured between 324 K and 773 K. The electrical resistivity decreased up to the samples with Zn content x = 0.05 in Cu2ZnxSn1-xSe3, and slightly increased in the sample Cu2Zn0.075Sn0.925Se3. This behavior is consistent with the changes in the carrier concentration confirmed by room temperature Hall coefficient data. Temperature dependent electrical resistivity of all samples showed heavily doped semiconductor behavior. All the samples exhibit positive Seebeck coefficient (S) and Hall coefficient indicating that the majority of the carriers are holes. A linear increase in Seebeck coefficient with increase in temperature indicates the degenerate semiconductor behavior. The total thermal conductivity of the doped samples increased with a higher amount of doping, due to the increase in the carrier contribution. The total and lattice thermal conductivity of all samples showed 1/1 dependence, which points toward the dominance of phonon scattering at high temperatures. The maximum 1/TZF = 0.48 at 773 K was obtained for the sample Cu2SnSe3 due to a low thermal conductivity compared to the doped samples. (C) 2014 Elsevier B.V. All rights reserved.