5 resultados para Posets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A subspace representation of a poset S = {s(1), ..., S-t} is given by a system (V; V-1, ..., V-t) consisting of a vector space V and its sub-spaces V-i such that V-i subset of V-j if s(i) (sic) S-j. For each real-valued vector chi = (chi(1), ..., chi(t)) with positive components, we define a unitary chi-representation of S as a system (U: U-1, ..., U-t) that consists of a unitary space U and its subspaces U-i such that U-i subset of U-j if S-i (sic) S-j and satisfies chi 1 P-1 + ... + chi P-t(t) = 1, in which P-i is the orthogonal projection onto U-i. We prove that S has a finite number of unitarily nonequivalent indecomposable chi-representations for each weight chi if and only if S has a finite number of nonequivalent indecomposable subspace representations; that is, if and only if S contains any of Kleiner's critical posets. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Euler characteristic of a finite category is defined and shown to be compatible with Euler characteristics of other types of object, including orbifolds. A formula is proved for the cardinality of a colimit of sets, generalizing the classical inclusion-exclusion formula. Both rest on a generalization of Rota's Möbius inversion from posets to categories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Symbolic dynamics is a branch of mathematics that studies the structure of infinite sequences of symbols, or in the multidimensional case, infinite grids of symbols. Classes of such sequences and grids defined by collections of forbidden patterns are called subshifts, and subshifts of finite type are defined by finitely many forbidden patterns. The simplest examples of multidimensional subshifts are sets of Wang tilings, infinite arrangements of square tiles with colored edges, where adjacent edges must have the same color. Multidimensional symbolic dynamics has strong connections to computability theory, since most of the basic properties of subshifts cannot be recognized by computer programs, but are instead characterized by some higher-level notion of computability. This dissertation focuses on the structure of multidimensional subshifts, and the ways in which it relates to their computational properties. In the first part, we study the subpattern posets and Cantor-Bendixson ranks of countable subshifts of finite type, which can be seen as measures of their structural complexity. We show, by explicitly constructing subshifts with the desired properties, that both notions are essentially restricted only by computability conditions. In the second part of the dissertation, we study different methods of defining (classes of ) multidimensional subshifts, and how they relate to each other and existing methods. We present definitions that use monadic second-order logic, a more restricted kind of logical quantification called quantifier extension, and multi-headed finite state machines. Two of the definitions give rise to hierarchies of subshift classes, which are a priori infinite, but which we show to collapse into finitely many levels. The quantifier extension provides insight to the somewhat mysterious class of multidimensional sofic subshifts, since we prove a characterization for the class of subshifts that can extend a sofic subshift into a nonsofic one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To every partially ordered set (poset), one can associate a generating function, known as the P-partition generating function. We find necessary conditions and sufficient conditions for two posets to have the same P-partition generating function. We define the notion of a jump sequence for a labeled poset and show that having equal jumpsequences is a necessary condition for generating function equality. We also develop multiple ways of modifying posets that preserve generating function equality. Finally, we are able to give a complete classification of equalities among partially ordered setswith exactly two linear extensions.