984 resultados para Portfolio optimization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address a portfolio optimization problem in a semi-Markov modulated market. We study both the terminal expected utility optimization on finite time horizon and the risk-sensitive portfolio optimization on finite and infinite time horizon. We obtain optimal portfolios in relevant cases. A numerical procedure is also developed to compute the optimal expected terminal utility for finite horizon problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As it is well known, competitive electricity markets require new computing tools for power companies that operate in retail markets in order to enhance the management of its energy resources. During the last years there has been an increase of the renewable penetration into the micro-generation which begins to co-exist with the other existing power generation, giving rise to a new type of consumers. This paper develops a methodology to be applied to the management of the all the aggregators. The aggregator establishes bilateral contracts with its clients where the energy purchased and selling conditions are negotiated not only in terms of prices but also for other conditions that allow more flexibility in the way generation and consumption is addressed. The aggregator agent needs a tool to support the decision making in order to compose and select its customers' portfolio in an optimal way, for a given level of profitability and risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the extensive literature in finding new models to replace the Markowitz model or trying to increase the accuracy of its input estimations, there is less studies about the impact on the results of using different optimization algorithms. This paper aims to add some research to this field by comparing the performance of two optimization algorithms in drawing the Markowitz Efficient Frontier and in real world investment strategies. Second order cone programming is a faster algorithm, appears to be more efficient, but is impossible to assert which algorithm is better. Quadratic Programming often shows superior performance in real investment strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine numerical performance of various methods of calculation of the Conditional Value-at-risk (CVaR), and portfolio optimization with respect to this risk measure. We concentrate on the method proposed by Rockafellar and Uryasev in (Rockafellar, R.T. and Uryasev, S., 2000, Optimization of conditional value-at-risk. Journal of Risk, 2, 21-41), which converts this problem to that of convex optimization. We compare the use of linear programming techniques against a non-smooth optimization method of the discrete gradient, and establish the supremacy of the latter. We show that non-smooth optimization can be used efficiently for large portfolio optimization, and also examine parallel execution of this method on computer clusters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper examines the potential impact of new capital requirements on asset allocations of Finnish pension institutions. We describe the new requirements and consider portfolio construction to minimize regulatory capital, given the investor’s preferred level of expected return. Results identify portfolio transactions that enhance expected return without increasing capital needs. Regulation calls for portfolio diversification and prudence in management, but this paper shows that market participants can exploit inconsistencies in regulation. Possible future consequences include capital outflows from the pension system and an unintended decrease in pre-funding of old-age pensions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis provides a complete analysis of the Standard Capital Requirements given by Solvency II for a real insurance portfolio. We analyze the investment portfolio of BPI Vida e Pensões, an insurance company affiliated with a Portuguese bank BPI, both at security, sub-portfolio and asset class levels. By using the Standard Formula from EIOPA, Total SCR amounts to 239M€. This value is mostly explained by Market and Default Risk whereas the former is driven by Spread and Concentration Risks. Following the methodology of Leblanc (2011), we examine the Marginal Contribution of an asset to the SCR which allows for the evaluation of the risks of each security given its characteristics and interactions in the portfolio. The top contributors to the SCR are Corporate Bonds and Term Deposits. By exploring further the composition of the portfolio, our results show that slight changes in allocation of Term and Cash Deposits have severe impacts on the total Concentration and Default Risks, respectively. Also, diversification effects are very relevant by representing savings of 122M€. Finally, Solvency II represents an opportunity for the portfolio optimization. By constructing efficient frontiers, we find that as the target expected return increases, a shift from Term Deposits/ Commercial Papers to Eurozone/Peripheral and finally Equities occurs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since the financial crisis, risk based portfolio allocations have gained a great deal in popularity. This increase in popularity is primarily due to the fact that they make no assumptions as to the expected return of the assets in the portfolio. These portfolios implicitly put risk management at the heart of asset allocation and thus their recent appeal. This paper will serve as a comparison of four well-known risk based portfolio allocation methods; minimum variance, maximum diversification, inverse volatility and equally weighted risk contribution. Empirical backtests will be performed throughout rising interest rate periods from 1953 to 2015. Additionally, I will compare these portfolios to more simple allocation methods, such as equally weighted and a 60/40 asset-allocation mix. This paper will help to answer the question if these portfolios can survive in a rising interest rate environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new portfolio risk measure that is the uncertainty of portfolio fuzzy return is introduced in this paper. Beyond the well-known Sharpe ratio (i.e., the reward-to-variability ratio) in modern portfolio theory, we initiate the so-called fuzzy Sharpe ratio in the fuzzy modeling context. In addition to the introduction of the new risk measure, we also put forward the reward-to-uncertainty ratio to assess the portfolio performance in fuzzy modeling. Corresponding to two approaches based on TM and TW fuzzy arithmetic, two portfolio optimization models are formulated in which the uncertainty of portfolio fuzzy returns is minimized, while the fuzzy Sharpe ratio is maximized. These models are solved by the fuzzy approach or by the genetic algorithm (GA). Solutions of the two proposed models are shown to be dominant in terms of portfolio return uncertainty compared with those of the conventional mean-variance optimization (MVO) model used prevalently in the financial literature. In terms of portfolio performance evaluated by the fuzzy Sharpe ratio and the reward-to-uncertainty ratio, the model using TW fuzzy arithmetic results in higher performance portfolios than those obtained by both the MVO and the fuzzy model, which employs TM fuzzy arithmetic. We also find that using the fuzzy approach for solving multiobjective problems appears to achieve more optimal solutions than using GA, although GA can offer a series of well-diversified portfolio solutions diagrammed in a Pareto frontier.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. ^ A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: (a) increase the efficiency of the portfolio optimization process, (b) implement large-scale optimizations, and (c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. ^ The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. ^ The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH). ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: a) increase the efficiency of the portfolio optimization process, b) implement large-scale optimizations, and c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since asset returns have been recognized as not normally distributed, the avenue of research regarding portfolio higher moments soon emerged. To account for uncertainty and vagueness of portfolio returns as well as of higher moment risks, we proposed a new portfolio selection model employing fuzzy sets in this paper. A fuzzy multi-objective linear programming (MOLP) for portfolio optimization is formulated using marginal impacts of assets on portfolio higher moments, which are modelled by trapezoidal fuzzy numbers. Through a consistent centroid-based ranking of fuzzy numbers, the fuzzy MOLP is transformed into an MOLP that is then solved by the maximin method. By taking portfolio higher moments into account, the approach enables investors to optimize not only the normal risk (variance) but also the asymmetric risk (skewness) and the risk of fat-tails (kurtosis). An illustrative example demonstrates the efficiency of the proposed methodology comparing to previous portfolio optimization models.