996 resultados para Population subdivision


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population subdivision complicates analysis of molecular variation. Even if neutrality is assumed, three evolutionary forces need to be considered: migration, mutation, and drift. Simplification can be achieved by assuming that the process of migration among and drift within subpopulations is occurring fast compared to Mutation and drift in the entire population. This allows a two-step approach in the analysis: (i) analysis of population subdivision and (ii) analysis of molecular variation in the migrant pool. We model population subdivision using an infinite island model, where we allow the migration/drift parameter Theta to vary among populations. Thus, central and peripheral populations can be differentiated. For inference of Theta, we use a coalescence approach, implemented via a Markov chain Monte Carlo (MCMC) integration method that allows estimation of allele frequencies in the migrant pool. The second step of this approach (analysis of molecular variation in the migrant pool) uses the estimated allele frequencies in the migrant pool for the study of molecular variation. We apply this method to a Drosophila ananassae sequence data set. We find little indication of isolation by distance, but large differences in the migration parameter among populations. The population as a whole seems to be expanding. A population from Bogor (Java, Indonesia) shows the highest variation and seems closest to the species center.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used coalescent analysis of mtDNA cytochrome b (cyt b) sequences to estimate times of divergence of three species of Alouatta-A. caraya, A. belzebul, and A. guariba-which are in close geographic proximity. A. caraya is inferred to have diverged from the A. guariba/A. belzebul clade approximately 3.83 million years ago (MYA), with the later pair diverging approximately 1.55 MYA. These dates are much more recent than previous dates based on molecular-clock methods. In addition, analyses of new sequences from the Atlantic Coastal Forest species A. guariba indicate the presence of two distinct haplogroups corresponding to northern and southern populations with both haplogroups occurring in sympatry within Sao Paulo state. The time of divergence of these two haplogroups is estimated to be 1.2 MYA and so follows quite closely after the divergence of A. guariba and A. belzebul. These more recent dates point to the importance of Pleistocene environmental events as important factors in the diversification of A. belzebul and A. guariba. We discuss the diversification of the three Alouatta species in the context of recent models of climatic change and with regard to recent molecular phylogeographic analyses of other animal groups distributed in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The territorial fishing zones of Australia and Indonesia are contiguous to the north of Australia in the Timor and Arafura Seas and in the Indian Ocean to the north of Christmas Island. The area surrounding the shared boundary consists of a variety of bio-diverse marine habitats including shallow continental shelf waters, oceanic trenches and numerous offshore islands. Both countries exploit a variety of fisheries species, including whaler (Carcharhinus spp.) and hammerhead sharks (Sphyrna spp.). Despite their differences in social and financial arrangements, the two countries are motivated to develop complementary co-management practices to achieve resource sustainability. An essential starting point is knowledge of the degree of population subdivision, and hence fisheries stock status, in exploited species. Results: Populations of four commercially harvested shark species (Carcharhinus obscurus, Carcharhinus sorrah, Prionace glauca, Sphyrna lewini) were sampled from northern Australia and central Indonesia. Neutral genetic markers (mitochondrial DNA control region sequence and allelic variation at co-dominant microsatellite loci) revealed genetic subdivision between Australian and Indonesian populations of C. sorrah. Further research is needed to address the possibility of genetic subdivision among C. obscurus populations. There was no evidence of genetic subdivision for P. glauca and S. lewini populations, but the sampling represented a relatively small part of their distributional range. For these species, more detailed analyses of population genetic structure is recommended in the future. Conclusion: Cooperative management between Australia and Indonesia is the best option at present for P. glauca and S. lewini, while C. sorrah and C. obscurus should be managed independently. On-going research on these and other exploited shark and ray species is strongly recommended. Biological and ecological similarity between species may not be a predictor of population genetic structure, so species-specific studies are recommended to provide new data to assist with sustainable fisheries management.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite international protection of white sharks Carcharodon carcharias, important conservation parameters such as abundance, population structure and genetic diversity are largely unknown. The tissue of 97 predominately juvenile white sharks sampled from spatially distant eastern and southwestern Australian coastlines was sequenced for the mitochondrial DNA (mtDNA) control region and genotyped with 6 nuclear-encoded microsatellite loci. MtDNA population structure was found between the eastern and southwestern coasts (F-ST = 0.142, p < 0.0001), implying female reproductive philopatry. This concurs with recent satellite and acoustic tracking findings which suggest the sustained presence of discrete east coast nursery areas. Furthermore, population subdivision was found between the same regions with biparentally inherited micro satellite markers (F-ST = 0.009, p < 0.05), suggesting that males may also exhibit some degree of reproductive philopatry; 5 sharks captured along the east coast had mtDNA haplotypes that resembled western Indian Ocean sharks more closely than Australian/New Zealand sharks, suggesting that transoceanic dispersal, or migration resulting in breeding, may occur sporadically. Our most robust estimate of contemporary genetic effective population size was low and close to thresholds at which adaptive potential may be lost. For a variety of reasons, these contemporary estimates were at least 1, possibly 2, orders of magnitude below our historical effective size estimates. Population decline could expose these genetically isolated populations to detrimental genetic effects. Regional Australian white shark conservation management units should be implemented until genetic population structure, size and diversity can be investigated in more detail.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The interpretation of data on genetic variation with regard to the relative roles of different evolutionary factors that produce and maintain genetic variation depends critically on our assumptions concerning effective population size and the level of migration between neighboring populations. In humans, recent population growth and movements of specific ethnic groups across wide geographic areas mean that any theory based on assumptions of constant population size and absence of substructure is generally untenable. We examine the effects of population subdivision on the pattern of protein genetic variation in a total sample drawn from an artificial agglomerate of 12 tribal populations of Central and South America, analyzing the pooled sample as though it were a single population. Several striking findings emerge. (1) Mean heterozygosity is not sensitive to agglomeration, but the number of different alleles (allele count) is inflated, relative to neutral mutation/drift/equilibrium expectation. (2) The inflation is most serious for rare alleles, especially those which originally occurred as tribally restricted "private" polymorphisms. (3) The degree of inflation is an increasing function of both the number of populations encompassed by the sample and of the genetic divergence among them. (4) Treating an agglomerated population as though it were a panmictic unit of long standing can lead to serious biases in estimates of mutation rates, selection pressures, and effective population sizes. Current DNA studies indicate the presence of numerous genetic variants in human populations. The findings and conclusions of this paper are all fully applicable to the study of genetic variation at the DNA level as well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Simple sequence repeats (SSRs), consisting of tandemly repeated multiple copies of mono-, di-, tri-, or tetranucleotide motifs, are ubiquitous in eukaryotic genomes and are frequently used as genetic markers, taking advantage of their length polymorphism. We have examined the polymorphism of such sequences in the chloroplast genomes of plants, by using a PCR-based assay. GenBank searches identified the presence of several (dA)n.(dT)n mononucleotide stretches in chloroplast genomes. A chloroplast (cp) SSR was identified in three pine species (Pinus contorta, Pinus sylvestris, and Pinus thunbergii) 312 bp upstream of the psbA gene. DNA amplification of this repeated region from 11 pine species identified nine length variants. The polymorphic amplified fragments were isolated and the DNA sequence was determined, confirming that the length polymorphism was caused by variation in the length of the repeated region. In the pines, the chloroplast genome is transmitted through pollen and this PCR assay may be used to monitor gene flow in this genus. Analysis of 305 individuals from seven populations of Pinus leucodermis Ant. revealed the presence of four variants with intrapopulational diversities ranging from 0.000 to 0.629 and an average of 0.320. Restriction fragment length polymorphism analysis of cpDNA on the same populations previously failed to detect any variation. Population subdivision based on cpSSR was higher (Gst = 0.22, where Gst is coefficient of gene differentiation) than that revealed in a previous isozyme study (Gst = 0.05). We anticipate that SSR loci within the chloroplast genome should provide a highly informative assay for the analysis of the genetic structure of plant populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. The phylogeography of freshwater taxa is often integrally linked with landscape changes such as drainage re-alignments that may present the only avenue for historical dispersal for these taxa. Classical models of gene flow do not account for landscape changes and so are of little use in predicting phylogeography in geologically young freshwater landscapes. When the history of drainage formation is unknown, phylogeographical predictions can be based on current freshwater landscape structure, proposed historical drainage geomorphology, or from phylogeographical patterns of co-distributed taxa. 2. This study describes the population structure of a sedentary freshwater fish, the chevron snakehead (Channa striata), across two river drainages on the Indochinese Peninsula. The phylogeographical pattern recovered for C. striata was tested against seven hypotheses based on contemporary landscape structure, proposed history and phylogeographical patterns of codistributed taxa. 3. Consistent with the species ecology, analysis of mitochondrial and microsatellite loci revealed very high differentiation among all sampled sites. A strong signature of historical population subdivision was also revealed within the contemporary Mekong River Basin (MRB). Of the seven phylogeographical hypotheses tested, patterns of co-distributed taxa proved to be the most adequate for describing the phylogeography of C. striata. 4. Results shed new light on SE Asian drainage evolution, indicating that the Middle MRB probably evolved via amalgamation of at least three historically independent drainage sections and in particular that the Mekong River section centred around the northern Khorat Plateau in NE Thailand was probably isolated from the greater Mekong for an extensive period of evolutionary time. In contrast, C. striata populations in the Lower MRB do not show a phylogeographical signature of evolution in historically isolated drainage lines, suggesting drainage amalgamation has been less important for river landscape formation in this region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite international protection of white sharks (Carcharodon carcharias), important conservation parameters such as abundance, population structure and genetic diversity are largely unknown. The tissue of 97 predominately juvenile white sharks sampled from spatially distant eastern and southwestern Australian coastlines was sequenced for the mitochondrial DNA (mtDNA) control region and genotyped with six nuclear-encoded microsatellite loci. MtDNA population structure was found between the eastern and southwestern coasts (FST = 0.142, p < 0.001), implying female natal philopatry. This concords with recent satellite and acoustic tracking findings which suggest the sustained presence of discrete east coast nursery areas. Furthermore, population subdivision was found between the same regions with biparentally inherited microsatellite markers (FST = 0.009, p <0.05), suggesting that males may also exhibit some degree of reproductive philopatry. Five sharks captured along the east coast had mtDNA haplotypes that resembled western Indian Ocean sharks more closely than Australian/New Zealand sharks, suggesting that transoceanic dispersal or migration resulting in breeding may occur sporadically. Our most robust estimate of contemporary genetic effective population size was low and below the threshold at which adaptive potential may be lost. For a variety of reasons, these contemporary estimates were at least one, possibly two orders of magnitude below our historical effective size estimates. Further population decline could expose these genetically isolated populations to detrimental genetic effects. Regional Australian white shark conservation management units should be implemented until genetic population structure, size and diversity can be investigated in more detail. Reference: Blower, D. C., Pandolfi, J. M., Gomez-Cabrera, M. del C., Bruce, B. D. & Ovenden, J. R. (In press - April 2012). Population genetics of Australian white sharks reveals fine-scale spatial structure, transoceanic dispersal events and low effective population sizes. Marine Ecology Progress Series.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Life history characteristics were used to determine the stock structure of the polynemid Eleutheronema tetradactylum across northern Australia. Growth, estimated from back-calculated length-at-age from sagittal otoliths, and length at sex change were estimated from samples collected from 12 different locations across western, northern and eastern Australia between 2007 and 2009. Comparison of back-calculated length-at-age, growth and length at sex change between locations revealed significant variation in the life-history characteristics of E. tetradactylum across northern Australia, with significant differences detected in 43 of 45 location comparisons. Differences in otolith size relative to fish length also existed amongst locations. No differences in other morphometric relationships were detected. The results of this study provide evidence for a high degree of spatial population subdivision for E. tetradactylum across northern Australia, the finding of which has implications for E. tetradactylum fisheries throughout its range, and provides a biological basis for spatial management of the species in Australia. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Panulirus argus (Latreille, 1804) é uma das principais espécies de lagosta no Atlântico, sendo um dos maiores recursos pesqueiros do Atlântico Ocidental, onde apresenta um alto valor comercial. A forte explotação da espécie resulta em uma grande pressão sobre suas populações. Recentemente, foi descoberto que sob o binômio P. argus estão contidas duas espécies crípticas que ocorrem em alopatria, uma na região do Caribe e outra na costa brasileira. Esta tese tem como objetivo estudar como se estruturam geneticamente as populações dessas duas espécies, com o propósito de fornecer mais informações para a determinação de estoques e um correto manejo das espécies, e analisar os processos históricos evolutivos que moldaram suas histórias demográficas. Para tal, foram estudados dois marcadores mitocondriais (região controle e o gene da Citocromo Oxidase I) e loci de microssatélites de indivíduos de 7 regiões do Caribe (Florida, Bahamas, Turks e Caicos, Porto Rico, Cuba, Colômbia e Venezuela) e 11 estados do Brasil (Pará, Maranhão, Piauí, Ceará, Rio Grande do Norte, Pernambuco, Alagoas, Bahia, Espírito Santo, Rio de Janeiro e São Paulo). Dentro de cada espécie foram observadas duas linhagens mitocondriais diferentes, que co-ocorriam, de maneira homogênea, ao longo de suas distribuições. Hipotetiso que essas linhagens foram formadas a partir de um evento de vicariância com contato secundário ou como consequência de um efeito gargalo seguido de expansão. As duas linhagens são evidentes nas sequências da região controle mitocondrial, mas no gene da COI foram evidentes apenas em P. cf. argus do Caribe. As linhagens do Brasil se separaram há aproximadamente 233 - 288 mil anos e cada uma sofreu expansão em tempos diferentes, a primeira se expandiu há 100 mil anos e a segunda linhagem há 50 mil anos. As linhagens do Caribe se separaram cerca de 1 milhão de anos atrás e possuem o mesmo tempo de expansão, 50 mil anos. Os microssatélites não revelaram subdivisão populacional para nenhuma das duas espécies, porém os marcadores, juntos, sugeriram um fluxo gênico diferenciado entre localidades expostas a diferentes correntes marítimas. Considerando que essas lagostas são intensamente explotadas, é importante ser cuidadoso no momento de definir estoques pesqueiros. Para a espécie do Brasil, dois estoques pesqueiros foram sugeridos, o primeiro do Pará à Bahia e o segundo do sul da Bahia a São Paulo. Para a espécie do Caribe, foi mantida e reforçada a hipótese de quatro estoques sugerida pela FAO (Norte, Sul, Centro-Norte e Centro-Sul).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Habitat fragmentation may have some significant effects on population genetic structure because geographic distance and physical barriers may impede gene flow between populations. In this study, we investigated whether recent habitat fragmentation affected genetic structure and diversity of populations of the nematode Procamallanus fulvidraconis in the yellowhead catfish, Pelteobagrus fin't4draco. The nematode was collected from 12 localities in 7 floodplain lakes of the Yangtze River. Using I I intersirnple sequence repeat markers, analysis of molecular variance showed that genetic diversity occurred mainly within populations (70.26%). Expected heterozygosity (He) of P. fulvidraconis was barely different between connected (0.2105) and unconnected lakes (0.2083). Population subdivision (Fst) between connected lakes (0.2177) was higher than in unconnected lakes (0. 1676). However, the connected and unconnected lakes did not Cluster into 2 clades. A Mantel test revealed significant positive correlation between genetic and geographic distances (R = 0.5335, P < 0.01). These results suggest that habitat fragmentation did not cause genetic differentiation among populations or a reduction of diversity in isolated populations of P. fulvidraconis. At least 2 factors may increase the dispersal range of the nematode, i.e., flash flooding in summer and other species of fish that may serve as the definitive hosts. Moreover, lake fragmentation is probably a recent process; population size of the nematode in these lakes is large enough to maintain Population structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The disjunct distribution of forests in the Qinghai-Tibetan Plateau (QTP) and adjacent Helan Shan and Daqing Shan highlands provides an excellent model to examine vegetation shifts, glacial refugia and gene flow of key species in this complex landscape region in response to past climatic oscillations and human disturbance. In this study, we examined maternally inherited mitochondrial DNA (nad1 intron b/c and nad5 intron 1) and paternally inherited chloroplast DNA (trnC-trnD) sequence variation within a dominant forest species, Picea crassifolia Kom. We recovered nine mitotypes and two chlorotypes in a survey of 442 individuals from 32 populations sampled throughout the species' range. Significant mitochondrial DNA population subdivision was detected (G(ST) = 0.512; N-ST = 0.679), suggesting low levels of recurrent gene flow through seeds among populations and significant phylogeographical structure (N-ST > GST, P < 0.05). Plateau haplotypes differed in sequence from those in the adjacent highlands, suggesting a long period of allopatric fragmentation between the species in the two regions and the presence of independent refugia in each region during Quaternary glaciations. On the QTP platform, all but one of the disjunct populations surveyed were fixed for the same mitotype, while most populations at the plateau edge contained more than one haplotype with the mitotype that was fixed in plateau platform populations always present at high frequency. This distribution pattern suggests that present-day disjunct populations on the QTP platform experienced a common recolonization history. The same phylogeographical pattern, however, was not detected for paternally inherited chloroplast DNA haplotypes. Two chlorotypes were distributed throughout the range of the species with little geographical population differentiation (G(ST) = N-ST = 0.093). This provides evidence for highly efficient pollen-mediated gene flow among isolated forest patches, both within and between the QTP and adjacent highland populations. A lack of isolation to pollen-mediated gene flow between forests on the QTP and adjacent highlands is surprising given that the Tengger Desert has been a geographical barrier between these two regions for approximately the last 1.8 million years.