989 resultados para Population regulation
Resumo:
The extent to which density-dependent processes regulate natural populations is the subject of an ongoing debate. We contribute evidence to this debate showing that density-dependent processes influence the population dynamics of the ectoparasite Aponomma hydrosauri (Acari: Ixodidae), a tick species that infests reptiles in Australia. The first piece of evidence comes from an unusually long-term dataset on the distribution of ticks among individual hosts. If density-dependent processes are influencing either host mortality or vital rates of the parasite population, and those distributions can be approximated with negative binomial distributions, then general host-parasite models predict that the aggregation coefficient of the parasite distribution will increase with the average intensity of infections. We fit negative binomial distributions to the frequency distributions of ticks on hosts, and find that the estimated aggregation coefficient k increases with increasing average tick density. This pattern indirectly implies that one or more vital rates of the tick population must be changing with increasing tick density, because mortality rates of the tick's main host, the sleepy lizard, Tiliqua rugosa, are unaffected by changes in tick burdens. Our second piece of evidence is a re-analysis of experimental data on the attachment success of individual ticks to lizard hosts using generalized linear modelling. The probability of successful engorgement decreases with increasing numbers of ticks attached to a host. This is direct evidence of a density-dependent process that could lead to an increase in the aggregation coefficient of tick distributions described earlier. The population-scale increase in the aggregation coefficient is indirect evidence of a density-dependent process or processes sufficiently strong to produce a population-wide pattern, and thus also likely to influence population regulation. The direct observation of a density-dependent process is evidence of at least part of the responsible mechanism.
Resumo:
The theta-logistic is a widely used generalisation of the logistic model of regulated biological processes which is used in particular to model population regulation. Then the parameter theta gives the shape of the relationship between per-capita population growth rate and population size. Estimation of theta from population counts is however subject to bias, particularly when there are measurement errors. Here we identify factors disposing towards accurate estimation of theta by simulation of populations regulated according to the theta-logistic model. Factors investigated were measurement error, environmental perturbation and length of time series. Large measurement errors bias estimates of theta towards zero. Where estimated theta is close to zero, the estimated annual return rate may help resolve whether this is due to bias. Environmental perturbations help yield unbiased estimates of theta. Where environmental perturbations are large, estimates of theta are likely to be reliable even when measurement errors are also large. By contrast where the environment is relatively constant, unbiased estimates of theta can only be obtained if populations are counted precisely Our results have practical conclusions for the design of long-term population surveys. Estimation of the precision of population counts would be valuable, and could be achieved in practice by repeating counts in at least some years. Increasing the length of time series beyond ten or 20 years yields only small benefits. if populations are measured with appropriate accuracy, given the level of environmental perturbation, unbiased estimates can be obtained from relatively short censuses. These conclusions are optimistic for estimation of theta. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
The snowshoe hare and the Canadian lynx in the boreal forests of North America show 9- to 11-year density cycles. These are generally assumed to be linked to each other because lynx are specialist predators on hares. Based on time series data for hare and lynx, we show that the dominant dimensional structure of the hare series appears to be three whereas that of the lynx is two. The three-dimensional structure of the hare time series is hypothesized to be due to a three-trophic level model in which the hare may be seen as simultaneously regulated from below and above. The plant species in the hare diet appear compensatory to one another, and the predator species may, likewise, be seen as an internally compensatory guild. The lynx time series are, in contrast, consistent with a model of donor control in which their populations are regulated from below by prey availability. Thus our analysis suggests that the classic view of a symmetric hare–lynx interaction is too simplistic. Specifically, we argue that the classic food chain structure is inappropriate: the hare is influenced by many predators other than the lynx, and the lynx is primarily influenced by the snowshoe hare.
Resumo:
Understanding and predicting the distribution of organisms in heterogeneous environments lies at the heart of ecology, and the theory of density-dependent habitat selection (DDHS) provides ecologists with an inferential framework linking evolution and population dynamics. Current theory does not allow for temporal variation in habitat quality, a serious limitation when confronted with real ecological systems. We develop both a stochastic equivalent of the ideal free distribution to study how spatial patterns of habitat use depend on the magnitude and spatial correlation of environmental stochasticity and also a stochastic habitat selection rule. The emerging patterns are confronted with deterministic predictions based on isodar analysis, an established empirical approach to the analysis of habitat selection patterns. Our simulations highlight some consistent patterns of habitat use, indicating that it is possible to make inferences about the habitat selection process based on observed patterns of habitat use. However, isodar analysis gives results that are contingent on the magnitude and spatial correlation of environmental stochasticity. Hence, DDHS is better revealed by a measure of habitat selectivity than by empirical isodars. The detection of DDHS is but a small component of isodar theory, which remains an important conceptual framework for linking evolutionary strategies in behavior and population dynamics.
Resumo:
Spatial processes could play an important role in density-dependent population regulation because the disproportionate use of poor quality habitats as population size increases is widespread in animal populations-the so-called buffer effect. While the buffer effect patterns and their demographic consequences have been described in a number of wild populations, much less is known about how dispersal affects distribution patterns and ultimately density dependence. Here, we investigated the role of dispersal in spatial density dependence using an extraordinarily detailed dataset from a reintroduced Mauritius kestrel (Falco punctatus) population with a territorial (despotic) breeding system. We show that recruitment rates varied significantly between territories, and that territory occupancy was related to its recruitment rate, both of which are consistent with the buffer effect theory. However, we also show that restricted dispersal affects the patterns of territory occupancy with the territories close to release sites being occupied sooner and for longer as the population has grown than the territories further away. As a result of these dispersal patterns, the strength of spatial density dependence is significantly reduced. We conclude that restricted dispersal can modify spatial density dependence in the wild, which has implications for the way population dynamics are likely to be impacted by environmental change.
Resumo:
Caughley's contributions to single-species population ecology are here discussed in the light of some of the ideas and studies his work elicited, with particular reference to influences on my own work and that of my collaborators. Major themes are the manner and extent of population regulation; the alternate perspectives on population regulation that are obtained by density-dependence analyses and mechanistic analyses in terms of food availability and other causal factors; and ways in which mechanistic analyses can be elaborated to characterise a species' ecological niche and relate it to the species' geographic range.
Resumo:
Grassland ecosystems comprise a major portion of the earth’s terrestrial surface, ranging from high-input cultivated monocultures or simple species mixtures to relatively unmanaged but dynamic systems. Plant pathogens are a component of these systems with their impact dependent on many interacting factors, including grassland species population dynamics and community composition, the topics covered in this paper. Plant pathogens are affected by these interactions and also act reciprocally by modifying their nature. We review these features of disease in grasslands and then introduce the 150-year long-term Park Grass Experiment (PGE) at Rothamsted Research in the UK. We then consider in detail two plant-pathogen systems present in the PGE, Tragopogon pratensis-Puccinia hysterium and Holcus lanata-Puccinia coronata. These two systems have very different life history characteristics: the first, a biennial member of the Asteraceae infected by its host-specific, systemic rust; the second, a perennial grass infected by a host-non-specific rust. We illustrate how observational, experimental and modelling studies can contribute to a better understanding of population dynamics, competitive interactions and evolutionary outcomes. With Tragopogon pratensis-Puccinia hysterium, characterised as an “outbreak” species in the PGE, we show that pathogen-induced mortality is unlikely to be involved in host population regulation; and that the presence of even a short-lived seed-bank can affect the qualitative outcomes of the host-pathogen dynamics. With Holcus lanata-Puccinia coronata, we show how nutrient conditions can affect adaptation in terms of host defence mechanisms, and that co-existence of competing species affected by a common generalist pathogen is unlikely.
Resumo:
The rat tapeworm, Hymenolepis diminuta, induces mastocytosis, hypertrophy of enteric smooth muscle, alteration of enteric myoelectric activity, and slowed enteric transit of the rat host's intestine. This report examines the resolution of both tapeworm-induced mastocytosis and tissue changes during the period following removal of the tapeworm with Praziquantel (PZQ). The dynamics of the mucosal mast cell (MMC) population following removal of the tapeworms was assessed by histochemical identification of MMC and morphometric techniques. As a possible mechanism of MMC population regulation, MMC apoptosis was examined over the same experimental period using the in situ nick end labeling of fragmented DNA (TUNEL). Shifts in MMC numbers were correlated with functional and morphological changes of the intestine following removal of the adult-stage tapeworm. Ileal tissues from rats infected 32 days with H. diminuta (the beginning of plateau phase of tapeworm-induced chronic mastocytosis) were harvested 1, 2, 3, and 4 weeks after the PZQ treatment. Control ilea were obtained either from rats which were never infected and never treated with PZQ or from rats infected with H, diminuta for 32 days but not treated with PZQ. In order to detect MMC and apoptosis, tissue sections of ileum were doubled stained sequentially with Astra blue for MMC granules followed by a modification of the TUNEL technique. No alteration in MMC numbers were observed in PZQ-treated animals until 3 weeks after the removal of the tapeworms. The decline of MMC occurred in the mucosa and submucosa. MMC numbers first approached uninfected control levels at 4 weeks posttreatment. Coincident with the decline in mucosal MMC numbers, the rate of MMC entering apoptosis also declined. Simultaneously, ileal smooth muscle layers, hypertrophied by infection, and mucosal structures began the process of involution and atrophy. Apoptosis of MMC in the submucosa and muscularis mucosa was not detected. In conclusion, H. diminuta elicited mastocytosis and increased thickness of both mucosa and muscularis externa do not begin a decline toward control Values until 3 weeks after the parasites are gone and normal intestinal motility is restored. These data are consistent with the lack of MMC mediation of altered motility, and the decline in the rate of MMC apoptosis at 3 weeks post-PZQ suggests that apoptosis may play an important role in the involution of tapeworm-induced mastocytosis. (C) 1999 Academic Press.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An experimental test of rainfall as a control agent of Glycaspis brimblecombei Moore (Hemiptera, Psyllidae) on seedlings of Eucalyptus camaldulensis Dehn (Myrtaceae). Glycaspis brimblecombei is one the greatest threats to eucalyptus plantations in Brazil. The effects of rainfall to reduce the abundance of lerp of Glycaspis brimblecombei on experimentally infested seedlings of Eucalyptus camaldulensis were assessed. The number of lerps on the adaxial and abaxial surfaces of every leaf of 60 seedlings was recorded, before and after submission to the following treatments: "artificial rain", "leaf wetting" and control. A drastic reduction in lerp abundance per plant was observed after the treatments "leaf wetting" and artificial rain (F = 53.630; p < 0.001), whereas lerp abundance remained roughly constant in the control treatment along the experiment (F = 1.450; p = 0.232). At the end of the experiment, lerp abundance was significantly lower in both the "artificial rain" and "leaf wetting" than in the control treatment. Two days of rainfall simulation were sufficient to decrease more than 50% of the lerp population, with almost 100% of effectiveness after 5 days of experiment. Our results indicate that lerp solubilization and mechanical removal by water are potential tools to the population regulation of G. brimblecombei on E. camaldulensis seedlings.
Resumo:
The stable co-existence of two haploid genotypes or two species is studied in a spatially heterogeneous environment submitted to a mixture of soft selection (within-patch regulation) and hard selection (outside-patch regulation) and where two kinds of resource are available. This is analysed both at an ecological time-scale (short term) and at an evolutionary time-scale (long term). At an ecological scale, we show that co-existence is very unlikely if the two competitors are symmetrical specialists exploiting different resources. In this case, the most favourable conditions are met when the two resources are equally available, a situation that should favour generalists at an evolutionary scale. Alternatively, low within-patch density dependence (soft selection) enhances the co-existence between two slightly different specialists of the most available resource. This results from the opposing forces that are acting in hard and soft regulation modes. In the case of unbalanced accessibility to the two resources, hard selection favours the most specialized genotype, whereas soft selection strongly favours the less specialized one. Our results suggest that competition for different resources may be difficult to demonstrate in the wild even when it is a key factor in the maintenance of adaptive diversity. At an evolutionary scale, a monomorphic invasive evolutionarily stable strategy (ESS) always exists. When a linear trade-off exists between survival in one habitat versus that in another, this ESS lies between an absolute adjustment of survival to niche size (for mainly soft-regulated populations) and absolute survival (specialization) in a single niche (for mainly hard-regulated populations). This suggests that environments in agreement with the assumptions of such models should lead to an absence of adaptive variation in the long term.
Resumo:
Fig trees are pollinated by fig wasps, which also oviposit in female flowers. The wasp larvae gall and eat developing seeds. Although fig trees benefit from allowing wasps to oviposit, because the wasp offspring disperse pollen, figs must prevent wasps from ovipositing in all flowers, or seed production would cease, and the mutualism would go extinct. In Ficus racemosa, we find that syconia (‘figs’) that have few foundresses (ovipositing wasps) are underexploited in the summer (few seeds, few galls, many empty ovules) and are overexploited in the winter (few seeds, many galls, few empty ovules). Conversely, syconia with many foundresses produce intermediate numbers of galls and seeds, regardless of season. We use experiments to explain these patterns, and thus, to explain how this mutualism is maintained. In the hot summer, wasps suffer short lifespans and therefore fail to oviposit in many flowers. In contrast, cooler temperatures in the winter permit longer wasp lifespans, which in turn allows most flowers to be exploited by the wasps. However, even in winter, only in syconia that happen to have few foundresses are most flowers turned into galls. In syconia with higher numbers of foundresses, interference competition reduces foundress lifespans, which reduces the proportion of flowers that are galled. We further show that syconia encourage the entry of multiple foundresses by delaying ostiole closure. Taken together, these factors allow fig trees to reduce galling in the wasp-benign winter and boost galling (and pollination) in the wasp-stressing summer. Interference competition has been shown to reduce virulence in pathogenic bacteria. Our results show that interference also maintains cooperation in a classic, cooperative symbiosis, thus linking theories of virulence and mutualism. More generally, our results reveal how frequency-dependent population regulation can occur in the fig-wasp mutualism, and how a host species can ‘set the rules of the game’ to ensure mutualistic behavior in its symbionts.
Resumo:
Abstract: Movements away from the natal or home territory are important to many ecological processes, including gene flow, population regulation, and disease epidemiology, yet quantitative data on these behaviors are lacking. Red foxes exhibit 2 periods of extraterritorial movements: when an individual disperses and when males search neighboring territories for extrapair copulations during the breeding season. Using radiotracking data collected at 5-min interfix intervals, we compared movement parameters, including distance moved, speed of movement, and turning angles, of dispersal and reproductive movements to those made during normal territorial movements; the instantaneous separation distances of dispersing and extraterritorial movements to the movements of resident adults; and the frequency of locations of 95%, 60%, and 30% harmonic mean isopleths of adult fox home territories to randomly generated fox movements. Foxes making reproductive movements traveled farther than when undertaking other types of movement, and dispersal movements were straighter. Reproductive and dispersal movements were faster than territorial movements and also differed in intensity of search and thoroughness. Foxes making dispersal movements avoided direct contact with territorial adults and moved through peripheral areas of territories. The converse was true for reproductive movements. Although similar in some basic characteristics, dispersal and reproductive movements are fundamentally different both behaviorally and spatially and are likely to have different ultimate purposes and contrasting effects on spatial processes such as disease transmission