915 resultados para Poorly water-soluble


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New chemical entities with unfavorable water solubility properties are continuously emerging in drug discovery. Without pharmaceutical manipulations inefficient concentrations of these drugs in the systemic circulation are probable. Typically, in order to be absorbed from the gastrointestinal tract, the drug has to be dissolved. Several methods have been developed to improve the dissolution of poorly soluble drugs. In this study, the applicability of different types of mesoporous (pore diameters between 2 and 50 nm) silicon- and silica-based materials as pharmaceutical carriers for poorly water soluble drugs was evaluated. Thermally oxidized and carbonized mesoporous silicon materials, ordered mesoporous silicas MCM-41 and SBA-15, and non-treated mesoporous silicon and silica gel were assessed in the experiments. The characteristic properties of these materials are the narrow pore diameters and the large surface areas up to over 900 m/g. Loading of poorly water soluble drugs into these pores restricts their crystallization, and thus, improves drug dissolution from the materials as compared to the bulk drug molecules. In addition, the wide surface area provides possibilities for interactions between the loaded substance and the carrier particle, allowing the stabilization of the system. Ibuprofen, indomethacin and furosemide were selected as poorly soluble model drugs in this study. Their solubilities are strongly pH-dependent and the poorest (< 100 g/ml) at low pH values. The pharmaceutical performance of the studied materials was evaluated by several methods. In this work, drug loading was performed successfully using rotavapor and fluid bed equipment in a larger scale and in a more efficient manner than with the commonly used immersion methods. It was shown that several carrier particle properties, in particular the pore diameter, affect the loading efficiency (typically ~25-40 w-%) and the release rate of the drug from the mesoporous carriers. A wide pore diameter provided easier loading and faster release of the drug. The ordering and length of the pores also affected the efficiency of the drug diffusion. However, these properties can also compensate the effects of each other. The surface treatment of porous silicon was important in stabilizing the system, as the non-treated mesoporous silicon was easily oxidized at room temperature. Different surface chemical treatments changed the hydrophilicity of the porous silicon materials and also the potential interactions between the loaded drug and the particle, which further affected the drug release properties. In all of the studies, it was demonstrated that loading into mesoporous silicon and silica materials improved the dissolution of the poorly soluble drugs as compared to the corresponding bulk compounds (e.g. after 30 min ~2-7 times more drug was dissolved depending on the materials). The release profile of the loaded substances remained similar also after 3 months of storage at 30C/56% RH. The thermally carbonized mesoporous silicon did not compromise the Caco-2 monolayer integrity in the permeation studies and improved drug permeability was observed. The loaded mesoporous silica materials were also successfully compressed into tablets without compromising their characteristic structural and drug releasing properties. The results of this research indicated that mesoporous silicon/silica-based materials are promising materials to improve the dissolution of poorly water soluble drugs. Their feasibility in pharmaceutical laboratory scale processes was also confirmed in this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this thesis was to improve the dissolution rate of the poorly waters-soluble drug, fenofibrate by processing it with a high surface area carrier, mesoporous silica. The subsequent properties of the drug silica composite were studied in terms of drug distribution within the silica matrix, solid state and release properties. Prior to commencing any experimental work, the properties of unprocessed mesoporous silica and fenofibrate were characterised (chapter 3), this allowed for comparison with the processed samples studied in later chapters. Fenofibrate was a highly stable, crystalline drug that did not adsorb moisture, even under long term accelerated storage conditions. It maintained its crystallinity even after SC-CO2 processing. Its dissolution rate was limited and dependent on the characteristics of the particular in vitro media studied. Mesoporous silica had a large surface area and mesopore volume and readily picked up moisture when stored under long term accelerated storage conditions (75% RH, 40 oC). It maintained its mesopore character after SC-CO2 processing. A variety of methods were employed to process fenofibrate with mesoporous silica including physical mixing, melt method, solvent impregnation and novel methods such as liquid and supercritical carbon dioxide (SC-CO2) (chapter 4). It was found that it was important to break down the fenofibrate particulate structure to a molecular state to enable drug molecules enter into the silica mesopores. While all processing methods led to some increase in fenofibrate release properties; the impregnation, liquid and SC-CO2 methods produced the most rapid release rates. SC-CO2 processing was further studied with a view to optimising the processing parameters to achieve the highest drug-loading efficiency possible (chapter 5). In this thesis, it was that SC-CO2 processing pressure had a bearing on drug-loading efficiency. Neither pressure, duration or depressurisation rate affected drug solid state or release properties. The amount of drug that could be loaded onto to the mesoporous silica successfully was also investigated at different ratios of drug mass to silica surface area under constant SC-CO2 conditions; as the drug silica ratio increased, the drug-loading efficiency decreased, while there was no effect on drug solid state or release properties. The influence of the number of drug-loading steps was investigated (chapter 6) with a view to increasing the drug-loading efficiency. This multiple step approach did not yield an increase in drug-loading efficiency compared to the single step approach. It was also an objective in this chapter to understand how much drug could be loaded into silica mesopores; a method based on the known volume of the mesopores and true density of drug was investigated. However, this approach led to serious repercussions in terms of the subsequent solid state nature of the drug and its release performance; there was significant drug crystallinity and reduced release extent. The impact of in vitro release media on fenofibrate release was also studied (chapter 6). Here it was seen that media containing HCl led to reduced drug release over time compared to equivalent media not containing HCl. The key findings of this thesis are discussed in chapter 7 and included: 1. Drug silica processing method strongly influenced drug distribution within the silica matrix, drug solid state and release. 2. The silica surface area and mesopore volume also influenced how much drug could be loaded. It was shown that SC-CO2 processing variables such as processing pressure (13.79 41.37 MPa), duration time (4 24 h) and depressurisation rate (rapid or controlled) did not influence the drug distribution within the SBA- 15 matrix, drug solid state form or release. Possible avenues of research to be considered going forward include the development and application of high resolution imaging techniques to visualise drug molecules within the silica mesopores. Also, the issues surrounding SBA-15 usage in a pharmaceutical manufacturing environment should be addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Poor water-solubility of BCS class II drugs can limit their commercialization because of reduced oral bioavailability. It has been reported that loading of drug by adsorption onto porous silica would enhance drug solubility due to the increased surface area available for solvent diffusion. In this work, solid dispersions are formed using supercritical carbon dioxide (scCO2). The aim of this research was to characterise the solid-state properties of scCO2 dispersion and to investigate the impact of altering scCO2 processing conditions on final amorphous product performance that could lead to enhancement of drug dissolution rate for BCS class II drugs. Methods Indomethacin (IND) was purchased from Sigma-Aldrich (Dorset, UK) and was used as a model drug with two grades of high surface area silica (average particle sizes 3&amp;[micro] and 7&amp;[micro]), which were obtained directly from Grace-Davison (Germany). Material crystallinity was evaluated using powder X-ray diffraction (PXRD, Rigaku, miniflex II, Japan) and high-speed differential scanning calorimetry (Hyper-DSC 8000, Perkin Elmer, USA). Materials were placed in a high-pressure vessel consisting of a CO2 cylinder, a Thar Technologies P50 high-pressure pump and a 750 ml high-pressure vessel (Thar, USA). Physical mixtures were exposed to CO2 gas above its critical conditions. SEM imaging and elemental analysis were conducted using a Jeol 6500 FEGSEM (Advanced MicroBeam Inc., Austria). Drug release was examined using USP type II dissolution tester (Caleva, UK). Results The two grades of silica were found to be amorphous using PXRD and Hyper-DSC. Using PXRD, it was shown that an increase in incubation time and pressure resulted in a decrease in the crystalline content. Drug release profiles from the two different silica formulations prepared under the same conditions are shown in Figure 1. It was found that there was a significant enhancement in drug release, which was influenced, by silica type and other experiment conditions such as temperature, pressure and exposure time. SEM imaging and elemental analysis showed drug deposited inside silica pores as well as on the outer surface. Conclusion This project has shown that silica carrier platforms may be used as an alternative approach to generating polymeric solid dispersions of amorphous drugs exhibiting enhanced solubility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyvinylpyrrolidone is a widely used in tablet formulations with the linear form acting as a wetting agent and disintegrant whereas the cross-linked form is a super-disintegrant. We have previously reported that simply mixing the commercial cross-linked polymer with ibuprofen disrupted drug crystallinity with consequent improvements in drug dissolution behavior. In this study, we have designed and synthesized novel cross-linking agents containing a range of oligoether moieties which have then be polymerized with vinylpyrrolidone to generate a suite of novel excipients with enhanced hydrogen-bonding capabilities. The polymers have a porous surface and swell in most common solvents and in water; properties which suggest their value as disintegrants. The polymers were evaluated in simple physical mixtures with ibuprofen as a model poorly-water soluble drug. The results show that the novel PVPs induce the drug to become X-ray amorphous, which increased dissolution to a greater extent than that seen with commercial cross-linked PVP. The polymers stabilize the amorphous drug with no evidence for recrystallization seen after 20 weeks storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was the development and characterization of a biocompatible microemulsion (ME) containing soybean oil (O), phosphatidylcholine/sodium oleate/EumulginHRE40 as the surfactant mixture (S) and water or buffer solution as the aqueous phase (W), for oral delivery of the poorly water-soluble drugs sulfamerazine (SMR) and indomethacin (INM). A wide range of combinations to obtain clear oil-in-water (o/w) ME was observed from pseudo-ternary phase diagrams, which was greater after the incorporation of both drugs, suggesting that they acted as stabilizers. Drug partition studies indicated a lower affinity of the drugs for the oil domain when they were ionized and with increased temperature, explained by the fact that both drugs were introduced inside the oil domain, determined by nuclear magnetic resonance. High concentrations of SMR and INM were able to be incorporated (22.0 and 62.3 mg/mL, respectively). The ME obtained presented an average droplet size of 100 nm and a negative surface charge. A significant increase in the release of SMR was observed with the ME with the highest percentage of O, because of the solubilizing properties of the ME. Also, a small retention effect was observed for INM, which may be explained by the differences in the partitioning properties of the drugs. 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3535-3543, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, fluid bed granulation was applied to improve the dissolution of nimodipine and spironolactone, two very poorly water-soluble drugs. Granules were obtained with different amounts of sodium dodecyl sulfate and croscarmellose sodium and then compressed into tablets. The dissolution behavior of the tablets was studied by comparing their dissolution profiles and dissolution efficiency with those obtained from physical mixtures of the drug and excipients subjected to similar conditions. Statistical analysis of the results demonstrated that the fluid bed granulation process improves the dissolution efficiency of both nimodipine and spironolactone tablets. The addition of either the surfactant or the disintegrant employed in the study proved to have a lower impact on this improvement in dissolution than the fluid bed granulation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, fluid bed granulation was applied to improve the dissolution of nimodipine and spironolactone, two very poorly water-soluble drugs. Granules were obtained with different amounts of sodium dodecyl sulfate and croscarmellose sodium and then compressed into tablets. The dissolution behavior of the tablets was studied by comparing their dissolution profiles and dissolution efficiency with those obtained from physical mixtures of the drug and excipients subjected to similar conditions. Statistical analysis of the results demonstrated that the fluid bed granulation process improves the dissolution efficiency of both nimodipine and spironolactone tablets. The addition of either the surfactant or the disintegrant employed in the study proved to have a lower impact on this improvement in dissolution than the fluid bed granulation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study a novel method MicroJet reactor technology was developed to enable the custom preparation of nanoparticles. rnDanazol/HPMCP HP50 and Gliclazide/Eudragit S100 nanoparticles were used as model systems for the investigation of effects of process parameters and microjet reactor setup on the nanoparticle properties during the microjet reactor construction. rnFollowing the feasibility study of the microjet reactor system, three different nanoparticle formulations were prepared using fenofibrate as model drug. Fenofibrate nanoparticles stabilized with poloxamer 407 (FN), fenofibrate nanoparticles in hydroxypropyl methyl cellulose phthalate (HPMCP) matrix (FHN) and fenofibrate nanoparticles in HPMCP and chitosan matrix (FHCN) were prepared under controlled precipitation using MicroJet reactor technology. Particle sizes of all the nanoparticle formulations were adjusted to 200-250 nm. rnThe changes in the experimental parameters altered the system thermodynamics resulting in the production of nanoparticles between 20-1000 nm (PDI<0.2) with high drug loading efficiencies (96.5% in 20:1 polymer:drug ratio).rnDrug releases from all nanoparticle formulations were fast and complete after 15 minutes both in FaSSIF and FeSSIF medium whereas in mucodhesiveness tests, only FHCN formulation was found to be mucoadhesive. Results of the Caco-2 studies revealed that % dose absorbed values were significantly higher (p<0.01) for FHCN in both cases where FaSSIF and FeSSIF were used as transport buffer.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to investigate the various parameters that could control the encapsulation of lipophilic drugs and investigate the influence of the physical properties of poorly water-soluble drugs on bilayer loading. Initial work investigated on the solubilisation of ibuprofen, a model insoluble drug. Drug loading was assessed using HPLC and UV spectrophotometric analysis. Preliminary studies focused on the influence of bilayer composition on drug loading to obtain an optimum cholesterol concentration. This was followed up by studies investigating the effect of longer alkyl chain lipids, unsaturated alkyl chain lipids and charged lipids. The studies also focused on the effects of pH of the hydration medium and addition of the single chain surfactant a-tocopherol. The work was followed up by investigation of a range of insoluble drugs including flurbiprofen, indomethacin, sulindac, mefenamic acid, lignocaine and progesterone to investigate the influence of drugs properties and functional group on liposomal loading. The results show that no defined trend could be obtained linking the drug loading to the different drug properties including molecular weight, log P and other drug specific characteristics. However, the presence of the oppositely charged lipids improved the encapsulation of all the drugs investigated with a similar effect obtained with the substitution of the longer chain lipids. The addition of the single chain surfactant a-tocopherol resulted in enhancement of drug loading and possibly is governed by the log P of the drug candidate. Environmental scanning-electron microscopy (ESEM) was used to dynamically follow the changes in liposome morphology in real time during dehydration thereby providing a alternative assay of liposome formulation and stability. The ESEM analysis clearly demonstrated ibuprofen incorporation enhanced the stability of PC:Chol liposomes.