797 resultados para Pond for treatment of effluent. Stabilization ponds. biofilters. Microalgae removal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research evaluated the microalgae removal produced in a stabilization pond system using biofilters as post-treatment, besides characterizing the effluents of stabilization ponds and filters in relation to concentrations of algal biomass (chlorophyll a and suspended solids), organic matter (BOD and COD), total phosphorus, orthophosphate, pH and dissolved oxygen, and tried to correlate physicochemical parameters with chlorophyll "a". It was held at the Ponta Negra ETE which is constituted by three stabilization ponds, with a primary facultative pond and two of maturation. For the algae removal were used two submerged bio-filters: the filter FPF (Facultative Pond Filter), fed with facultative pond effluent; and the filter MPF (Maturation Pond Filter), fed with second maturation pond effluent. The filling material of both filters was predominantly gravel no. 2, although it contains portions of gravel no. 1 and no. 3. The filters operating conditions were bad, they were nearly 10 years without maintenance, without cleaning or removal of sludge since the time of its construction, and part of the filling material may be obstruct. Despite poor operating conditions were obtained satisfactory results, in level of posttreatment. Removal efficiencies in relation to BOD and COD were 7 and 25% in FPF and 9 and 19% and in MPF, respectively. In relation to TSS efficiencies in MPF and FPF were 37 and 20%, respectively. As for the chlorophyll "a" removal, the FPF efficiency was 44% and the MPF was 40%. There was 50% of consumption of dissolved oxygen, on average, within the filters. Two profiles were performed in the filters, and it was possible to conclude that variations throughout the day were not statistically significant, and that, regardless of the time of collection, they would have the same representation comparing to the time of data collection (7 am) and the daily average, although individual variations throughout the day have been shown to be significant. Another important observation is that the correlations between Chlorophyll a and TSS were bigger and more significant in the effluent of the filters than in the effluent of the ponds

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 6-month-long, bench-scale simulation of an industrial wastewater stabilization pond (WSP) system was conducted to evaluate responses to several potential performance-enhancing treatments. The industrial WSP system consists of an anaerobic primary (1ry) WSP treating high-strength wastewater, followed by facultative secondary (2ry) and aerobic tertiary (3ry) WSPs in series treating lower-strength wastewater. The 1ry WSP was simulated with four glass aquaria which were fed with wastewater from the actual WSP system. The treatments examined were phosphorus supplementation (PHOS), phosphorus supplementation with pH control (PHOS+ALK), and phosphorus supplementation with pH control and effluent recycle (PHOS+ALK+RCY). The supplementary phosphorus treatment alone did not yield any significant change versus the CONTROL 1ry model pond. The average carbon to phosphorus ratio of the feed wastewater received from the WSP system was already 100:0.019 (i.e., 2,100 mg/l: 0.4 mg/l). The pH-control treatments (PHOS+ALK and PHOS+ALK+RCY) produced significant results, with 9 to 12 percent more total organic carbon (TOC) removal, 43 percent more volatile organic acid (VOA) generation, 78 percent more 2-ethoxyethanol and 14 percent more bis(2-chloroethyl)ether removal, and from 100- to 10,000-fold increases in bacterial enzyme activity and heterotrophic bacterial numbers. Recycling a 10-percent portion of the effluent yielded less variability for certain physicochemical parameters in the PHOS+ALK+RCY 1ry model pond, but overall there was no statistically-detectable improvement in performance versus no recycle. The 2ry and 3ry WSPs were also simulated in the laboratory to monitor the effect and fate of increased phosphorus loadings, as might occur if supplemental phosphorus were added to the 1ry WSP. Noticeable increases in algal growth were observed at feed phosphorus concentrations of 0.5 mg/l; however, there were no significant changes in the monitored physicochemical parameters. The effluent phosphorus concentrations from both the 2ry and 3ry model ponds did increase notably when feed phosphorus concentrations were increased from 0.5 to 1.0 mg/l. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term environmental sustainability and community acceptance of the shrimp farming industry in Australia requires on-going development of efficient cost-effective effluent treatment options. In this study, we aimed to evaluate the effectiveness of a shrimp farm treatment system containing finfish and vertical artificial substrates (VAS). This was achieved by (1) quantifying the individual and collective effects of grey mullet (Mugil cephalus L.) and VASs on water and sediment quality, and (2) comparing the retention of N in treatment systems with and without the presence of finfish (M. cephalus and the siganid Siganus nebulosus (Quoy & Gaimard)), where light was selectively removed. Artificial substrates were found to significantly improve the settlement of particulate material, regardless of the presence of finfish. Mullet actively resuspended settled solids and reduced the production of nitrate when artificial substrates were absent. However, appreciable nitrification was observed when mullet were present together with artificial substrates. The total quantity of N retained by the mullet was found to be 1.8â 2.4% of the incoming pond effluent N. It was estimated that only 21% of the pond effluent N was available for mullet consumption. When S. nebulosus was added, total finfish N retention increased from 1.8% to 3.9%, N retention by mullet also improved (78±16 to 132±21-mg N dayâˆ1 before and after siganid addition respectively). Presence of filamentous macroalgae (Enteromorpha spp.) was found to improve the removal of N from pond effluent relative to treatments where light was excluded. Denitrification was also a significant sink for N (up to 24% N removed). Despite the absence of algal productivity and greater availability of nitrate, denitrification was not higher in treatments where light was excluded. Mullet were found to have no effect on the rates of denitrification but significantly reduced macroalgal growth on the surface of the water. When mullet were absent, excessive macroalgal growth led to reduced dissolved oxygen concentrations and nitrification. This study concludes that the culture of mullet alone in shrimp farm effluent treatment systems does not result in significant retention of N but can contribute to the control of macroalgal biomass. To improve N retention and removal, further work should focus on polyculturing a range of species and also on improving denitrification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficacy of waste stabilization lagoons for the treatment of five priority pollutants and two widely used commercial compounds was evaluated in laboratory model ponds. Three ponds were designed to simulate a primary anaerobic lagoon, a secondary facultative lagoon, and a tertiary aerobic lagoon. Biodegradation, volatilization, and sorption losses were quantified for bis(2-chloroethyl) ether, benzene, toluene, naphthalene, phenanthrene, ethylene glycol, and ethylene glycol monoethyl ether. A statistical model using a log normal transformation indicated biodegradation of bis(2-chloroethyl) ether followed first-order kinetics. Additionally, multiple regression analysis indicated biochemical oxygen demand was the water quality variable most highly correlated with bis(2-chloroethyl) ether effluent concentration. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bench-scale treatability study was conducted on a high-strength wastewater from a chemical plant to develop an alternative for the existing waste stabilization pond treatment system. The objective of this study was to determine the treatability of the wastewater by the activated sludge process and, if treatable, to determine appropriate operating conditions, and to evaluate the degradability of bis(2-chloroethyl)ether (Chlorex) and benzene in the activated sludge system. Four 4-L Plexi-glass, complete mixing, continuous flow activated sludge reactors were operated in parallel under different operating conditions over a 6-month period. The operating conditions examined were hydraulic retention time (HRT), sludge retention time (SRT), nutrient supplement, and Chlorex/benzene spikes. Generally the activated sludge system treating high-strength wastewater was stable under large variations of organic loading and operating conditions. At an HRT of 2 days, more than 90% removal efficiency with good sludge settleability was achieved when the organic loading was less than 0.4 g BOD$\sb5$/g MLVSS/d or 0.8 g COD/g MLVSS/d. At least 20 days of SRT was required to maintain steady operation. Phosphorus addition enhanced the performance of the system especially during stressed operation. On the average, removals of benzene and Chlorex were 73-86% and 37-65%, respectively. In addition, the low-strength wastewater was treatable by activated sludge process, showing more than 90% BOD removal at a HRT of 0.5 days. In general, the sludge had poor settling characteristics. The aerated lagoon process treating high-strength wastewater also provided significant organic reduction, but did not produce an acceptable effluent concentration. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effluent from sewage treatment plants has been associated with a range of pollutant effects. Depending on the influent composition and treatment processes the effluent may contain a myriad of different chemicals which makes monitoring very complex. In this study we aimed to monitor relatively polar organic pollutant mixtures using a combination of passive sampling techniques and a set of biochemistry based assays covering acute bacterial toxicity (Microtoxâ¢), phytotoxicity (Max-I-PAM assay) and genotoxicity (umuC assay). The study showed that all of the assays were able to detect effects in the samples and allowed a comparison of the two plants as well as a comparison between the two sampling periods. Distinct improvements in water quality were observed in one of the plants as result of an upgrade to a UV disinfection system, which improved from 24à sample enrichment required to induce a 50% response in the Microtox⢠assay to 84Ã, from 30à sample enrichment to induce a 50% reduction in photosynthetic yield to 125Ã, and the genotoxicity observed in the first sampling period was eliminated. Thus we propose that biochemical assay techniques in combination with time integrated passive sampling can substantially contribute to the monitoring of polar organic toxicants in STP effluents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molybdenum-doped TiO2 organic-inorganic hybrid nanoparticles were synthesized under mild hydrothermal conditions by in situ surface modification using n-butylamine. This was carried out at 150 degrees C at autogeneous pressure over 18 h. n-Butylamine was selected as a surfactant since it produced nanoparticles of the desired size and shape. The products were characterized using powder X-ray diffraction, Fourier transform infrared spectrometry, dynamic light-scattering spectroscopy, UV-Vis spectroscopy and transmission electron microscopy. Chemical oxygen demand was estimated in order to determine the photodegradation efficiency of the molybdenum-doped TiO2 hybrid nanoparticles in the treatment of pharmaceutical effluents. It was found that molybdenum-doped TiO2 hybrid nanoparticles showed higher photocatalytic efficiency than untreated TiO2 nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Separation of dissolved heavy metals such-as Cr(VI) and Cu(II) from electroplating effluents using a new technique of emulsion-free liquid membrane (EFLM) has been studied. Experimental results show that nearly 95% extraction is obtained resulting in stripping phase enrichment up to 50 times relative to feed. It is also found that emulsion-free liquid membranes are highly efficient and superior to other types of liquid membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of the existing methods for the treatment of rubber latex centrifugation eflluent are not only unsatisfactory in their efliciency to effect near perfect treatment in bringing down the COD to optimum level, but also time consuming and need a large landspace. As the rate of effluent generation is extremely high (20 litres for kilogram of rubber) there is a need for development of efficient system,capable of rapid reduction of COD and BOD. Though the organic load of the rubber efiluent is very high, it does not contain much processed chemicals and therefore it can be considered as a â˜biological eflluentâ. Further, the ratio of the Chemical Oxygen Demand to Biological Oxygen Demand (COD/BOD) of this effluent remain almost as a constant value. According to Montgomery (1967), estimation of BOD is not ideally suited for studies on process design, treatability, control of treatment plants, setting standards for treated effluents and assessing the effect of polluting discharges on the oxygen resources of receiving waters. Hence in the present study COD was measured to determine the impact of treatment system on the effluent. In the present study, attempts were made to evaluate the efficiencies of certain methods such as packed bed reactor using immobilized microbial cells, rotating biological contactor (RBC) and activated sludge process, for rapid and efficient treatment of natural rubber latex centrifugation effluent. In addition, studies were also carn'ed out to develop a suitable bioprocess for the coagulation of skim latex, as an alternative to the presently used acid coagulation process towards reducing the pollution load, besides recovering quality rubber

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wastewater reuse has become an important alternative to agricultural irrigation; on the other hand, it poses concern with regard to public health. Total coliform and Escherichia coli concentration, presence of helminth eggs and Salmonella, and physical-chemical parameters were evaluated in raw and treated wastewater. Chemical and biochemical oxygen demand removal efficiency was 74.6 and 77.9%, respectively. As for organic nitrogen, total phosphorus, and total suspended solids, total efficiency removal was 17.4, 12.5, and 32.9%, respectively. The average density of total coliforms and E. coli was 3.5 x 10(9) and 1.8 x 10(8) MPN/100 mL and 1.1 x 10(7) MPN/100 mL and 3.9 x 10(5) MPN/100 mL for raw and treated wastewater, respectively. Ascaris eggs were observed in 80.8% of the samples collected, and viable eggs in 42.3% of the samples. Salmonella was detected in 36.4% of the samples. The values observed in treated wastewater did not show the adequate bacteriological quality, as recommended by World Health Organization (Geneva, Switzerland). Therefore, additional measures should be taken to achieve an improved microbiological and parasitological quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photodegradation of the pharmaceuticals amoxicillin (AMX), bezafibrate (BZF) and paracetamol (PCT) in aqueous solutions via the photo-Fenton process was investigated under black-light and solar irradiation. The influences of iron source, initial H2O2 concentration and matrix (distilled water and sewage treatment plant effluent) on degradation efficiency were discussed in detail. The results showed that (i) the degradation of the drugs was favored in the presence of potassium ferrioxalate (FeOx) in comparison to Fe(NO3)(3): (ii) the increase of the H2O2 concentration improved the efficiency of AMX and BZF oxidation; however, the same was not observed for PCT: (iii) the influence of the matrix was observed for the degradation of BZF and PCT: (iv) under solar irradiation, the oxidation of the BZF and PCT is faster than under black-light irradiation. All these pharmaceuticals can be efficiently degraded employing the process evaluated. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First, the effect of ferrioxalate or iron nitrate on the photo-Fenton degradation efficiency of the pharmaceuticals lincomycin (LCM) and diazepam (DZP) was evaluated. The degradation of both pharmaceuticals was improved in the presence of ferrioxalate in relation to Fe(NO(3)), either under black-light or solar irradiation. The degradation of the pharmaceuticals was then evaluated when present in an effluent from sewage treatment plant (STP) under black-light irradiation. Pharmaceuticals oxidation was not influenced by the matrix, since very similar results were obtained when compared to the experiments carried out in distilled water. However, DOC removal was slightly affected by the matrix, due probably to the generation of recalcitrant intermediates during effluent photodegradation and to the high content of inorganic carbon of STP effluent. Even so, high DOC removal percentages were achieved, 65% for lincomycin and 80% for diazepam after 60 min irradiation. (C) 2010 Elsevier B.V. All rights reserved.