867 resultados para Polypropylene-silica nanocomposite


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite polymer insulators provide many advantages over the traditional porcelain insulators and they are increasingly being used at both transmission and distribution levels. In the present paper, an epoxy resin/silica nanocomposite dielectric material (NDM) structure is proposed and fabricated. Hydrophobic fumed silica is incorporated in epoxy resin matrix and acetone is adopted as media agent to effectively achieve homogenous dispersion of the nano-scale silica filler. The acetone also acts as diluents to reduce viscosity before the curing phase of epoxy resin and enables bubbles to escape from being trapped. Through partial discharge (PD) and surface aging tests, it is illustrated that the inception of surface discharge of the proposed NDM is relatively higher than that of the non-filled counterpart, and a better PD resistivity was observed in the negative half cycle regarding to applied AC voltage. Results of surface aging test indicate that surface discharge activity is retarded over the test conducting time. By contrast, surface discharge developed to the opposite way on the non-filled sample. Therefore, the proposed NDM could provide better safety reliability and lower maintenance cost to industrial application compared with nonfilled conventional epoxy resin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological sensing is explored through novel stable colloidal dispersions of pyrrole-benzophenone and pyrrole copolymerized silica (PPy-SiO(2)-PPyBPh) nanocomposites, which allow covalent linking of biological molecules through light mediation. The mechanism of nanocomposite attachment to a model protein is studied by gold labeled cholera toxin B (CTB) to enhance the contrast in electron microscopy imaging. The biological test itself is carried out without gold labeling, i.e., using CTB only. The protein is shown to be covalently bound through the benzophenone groups. When the reactive PPy-SiO(2)-PPyBPh-CTB nanocomposite is exposed to specific recognition anti-CTB immunoglobulins, a qualitative visual agglutination assay occurs spontaneously, producing as a positive test, PPy-SiO(2)-PPyBPh-CTB-anti-CTB, in less than 1 h, while the control solution of the PPy-SiO(2)-PPyBPh-CTB alone remained well-dispersed during the same period. These dispersions were characterized by cryogenic transmission microscopy (cryo-TEM), scanning electron microscopy (SEM), FTIR and X-ray photoelectron spectroscopy (XPS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer nanocomposites offer the potential of enhanced properties such as increased modulus and barrier properties to the end user. Much work has been carried out on the effects of extrusion conditions on melt processed nanocomposites but very little research has been conducted on the use of polymer nanocomposites in semi-solid forming processes such as thermoforming and injection blow molding. These processes are used to make much of today’s packaging, and any improvements in performance such as possible lightweighting due to increased modulus would bring signi?cant bene?ts both economically and environmentally. The work described here looks at the biaxial deformation of polypropylene–clay nanocomposites under industrial forming conditions in order to determine if the presence of clay affects processability, structure and mechanical properties of the stretched material. Melt compounded polypropylene/clay composites in sheet form were biaxially stretched at a variety of processing conditions to examine the effect of high temperature, high strain and high strain rate processing on sheet structure
and properties.

A biaxial test rig was used to carry out the testing which imposed conditions on the sheet that are representative of those applied in injection blow molding and thermoforming. Results show that the presence of clay increases the yield stress relative to the un?lled material at typical processing temperatures and that the sensitivity of the yield stress to temperature is greater for the ?lled material. The stretching process is found to have a signi?cant effect on the delamination and alignment of clay particles (as observed by TEM) and on yield stress and elongation at break of the stretched sheet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO2NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drugresistant bacterium. Bacterial sensitivity towards antibiotics and Ag-SiO2NC was studied using standard disc diffusion and death rate assay, respectively. The effect of Ag-SiO2NC on cell wall integrity was monitored using SDS assay and fatty acid profile analysis while the effect on metabolism and genetic stability was assayed microscopically, using CTC viability staining and comet assay, respectively. P. aeruginosa was found to be resistant to β-lactamase, glycopeptidase, sulfonamide, quinolones, nitrofurantoin and macrolides classes of antibiotics. Complete mortality of the bacterium was achieved with 80 μgml-1 concentration of Ag-SiO2NC. The cell wall integrity reduced with increasing time and reached a plateau of 70 % in 110 min. Changes were also noticed in the proportion of fatty acids after the treatment. Inside the cytoplasm, a complete inhibition of electron transport system was achieved with 100 μgml-1 Ag-SiO2NC, followed by DNA breakage. The study thus demonstrates that Ag-SiO2NC invades the cytoplasm of the multiple drug-resistant P. aeruginosa by impinging upon the cell wall integrity and kills the cells by interfering with electron transport chain and the genetic stability

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was undertaken to prepare nanosilica by a simple cost effective means and to use it as a potential nanomodifier in thermoplastic matrices and to develop useful composites. Nanosilica was prepared from sodium silicate and dilute hydrochloric acid by polymer induced crystallization technique under controlled conditions. The silica surface was modified by silane coupling agent to decrease the agglomeration and thus to increase the reinforcement with polymer. The pristine nanosilica and modified nanosilica were used to make nano-micro hybrid composites. Short glass fibres and nylon fibres were used as microfillers. The hybrid nanocomposites based on Polypropylene (PP) and High density poly ethylene (HOPE) are prepared. The mechanical, thermal, crystallization and dynamic mechanical properties of the composites are evaluated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Non-isothermal crystallisation kinetics of a polyamide 6/mesoporous silica nanocomposite (PA6-MS) has been investigated by differential scanning calorimetry (DSC) at different cooling rates. Mandelkern, Jeziorny-Ziabicki and Ozawa methods were applied to describe this crystallisation process. The analyses show that the mesoporous silica particles act as nucleating agents in the composite and that the Avrami exponent n varies from 3.0 to 4.6. The addition of mesoporous silica influenced the mechanism of nucleation and the growth of polyamide 6 (PA6) crystallites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plasticized poly(L-lactide)-silica nanocomposite materials have been successfully synthesized by sol-gel process. The resultant nanocomposites were characterized by infrared spectra (IR), X-ray diffraction (XRD), thermogravimetry (TG), Tensile testing and scanning electron microscope (SEM). IR measurements show that vibration of C-O-C group is confined by silica network. Also the crystallization of poly (L-lactide) is partly confined by silica network. The presence of even small amount of silica largely improves the tensile strength of the samples, TGA results reveal that the thermal stability of samples is improved with silica loading.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanocrystalline Fe53Co47 alloy was synthesized by a single-step transmetallation chemical method at room temperature. The Fe53Co47 alloy nanoparticles of 77 and 47 wt% were dispersed in silica matrix by the sol-gel process using tetraethyl orthosilcate. Structural studies reveal that the as-prepared alloy powders are in bcc phase and silica is in an amorphous state. The phase-transition temperature and Mossbauer spectra analysis of the Fe-Co alloy establishes the homogeneous alloy formation. A saturation magnetization of 218 emu/g was obtained for pure FeCo alloy at room temperature. Scanning electron microscopic analysis demonstrates the hollow-sphere morphology for FeCo alloy particles. Magnetic nanocomposite consisting of 47 wt% FeCo-silica shows enhanced thermal stability over the native FeCo alloy. Electrical and dielectric properties of 47 wt% FeCo-silica nanocomposites were investigated as a function of frequency and temperature. It was found that the dielectric constants and dielectric loss were stable throughout the measured temperature (310-373 K). Our results indicate that FeCo-silica nanocomposite is a promising candidate for high-frequency applications. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermal and flame-retardant properties of homo- and copolyimides were evaluated. Those containing sulfone linkages in the backbone were found to be more flame retardant. Both properties were dependent on the composition. A polyimide/silica nanocomposite was obtained through sol-gel processing. The effects of the addition of silica an the dispersion, interfacial adhesion, fire resistance, mechanical properties, and thermal stability of the composites were investigated. SEM analysis showed a good dispersion of silica with a diameter of 50-300 nm in the organic matrices. The addition of silica increased the fire retardancy and mechanical properties of the composites. (C) 2000 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deformation mechanism of a styrene/n-butyl acrylate copolymer latex film subjected to uniaxial tensile stress was studied by small-angle X-ray scattering. The influence of annealing at 23, 60, 80, and 100 degrees C for 4 h on microscopic deformation processes was elucidated. It was demonstrated that the microscopic deformation mechanism of the latex films transformed gradually from nonaffine deformation behavior to affine deformation behavior with increasing annealing temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanocomposite solid polymer electrolytes (NCSPEs) with conducting species other than Li ions are being investigated for solid-state battery applications. Pristine solid polymer electrolytes (SPEs) do not show ionic conductivity suitable for batteries. Addition of inert fillers to SPEs is known to enhance the ionic conductivity. In this paper, we present the role of silica nanoparticles in enhancing the ionic conductivity in NCSPEs with sodium as conducting species. Sodium bromide is complexed with the host polyethylene glycol polymer by solution cast method and silica nanoparticles (SiO2, average particle size 7 nm) are incorporated into the complex in small amounts. The composites are characterized by powder XRD and IR spectroscopy. Conductivity measurements are undertaken as a function of concentration of salt and also as a function of temperature using impedance spectroscopy. Addition of silica nanoparticles shows an enhancement in conductivity by 1-2 orders of magnitude. The results are discussed in terms of interaction of nanoparticles with the nonconducting anions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, mesoporous silica-cyclic olefin copolymer nanocomposite films were fabricated by solution casting. With an increase in silica loading, the stiffness of the matrix increased. The nanocomposite film shows increased strain to failure with moisture after aging by matrix plasticization. The storage modulus and loss factor for samples with silica content show better results compared with pristine polymer, as indicated by dynamic mechanical analysis. The interaction between filler-polymer chain exhibit hydrophobicity compared to the neat polymer. Water absorption studies at room temperature and near the T-g of the polymer (similar to 64 degrees C) were carried out. The nanocomposites up to 4 wt% filler reduces the water diffusion by forming hydrogen and chemical bonding. The result by calcium degradation test method for moisture permeability and Schottky structured organic device encapsulation under weathering condition confirms the effective reinforcement effect of silica particles in the matrix. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A large-scale process combined sonication with self-assembly techniques for the preparation of high-density gold nanoparticles supported on a [Ru(bpy)(3)](2+)-doped silica/Fe3O4 nanocomposite (GNRSF) is provided. The obtained hybrid nanomaterials containing Fe3O4 spheres have high saturation magnetization, which leads to their effective immobilization on the surface of an ITO electrode through simple manipulation by an external magnetic field (without the need of a special immobilization apparatus). Furthermore, this hybrid nanomaterial film exhibits a good and very stable electrochemiluminescence (ECL) behavior, which gives a linear response for tripropylamine (TPA) concentrations between 5 mu m and 0.21 mM, with a detection limit in the micromolar range. The sensitivity of this ECL sensor can be easily controlled by the amount of [Ru(bpy)(3)](2+) immobilized on the hybrid nanomaterials (that is, varying the amount of [Ru(bpy)(3)](2+) during GNRSF synthesis).