889 resultados para Polynomial powers of sigmoid
Resumo:
Wavelet functions have been used as the activation function in feedforward neural networks. An abundance of R&D has been produced on wavelet neural network area. Some successful algorithms and applications in wavelet neural network have been developed and reported in the literature. However, most of the aforementioned reports impose many restrictions in the classical backpropagation algorithm, such as low dimensionality, tensor product of wavelets, parameters initialization, and, in general, the output is one dimensional, etc. In order to remove some of these restrictions, a family of polynomial wavelets generated from powers of sigmoid functions is presented. We described how a multidimensional wavelet neural networks based on these functions can be constructed, trained and applied in pattern recognition tasks. As an example of application for the method proposed, it is studied the exclusive-or (XOR) problem.
Resumo:
In this paper, we described how a multidimensional wavelet neural networks based on Polynomial Powers of Sigmoid (PPS) can be constructed, trained and applied in image processing tasks. In this sense, a novel and uniform framework for face verification is presented. The framework is based on a family of PPS wavelets,generated from linear combination of the sigmoid functions, and can be considered appearance based in that features are extracted from the face image. The feature vectors are then subjected to subspace projection of PPS-wavelet. The design of PPS-wavelet neural networks is also discussed, which is seldom reported in the literature. The Stirling Universitys face database were used to generate the results. Our method has achieved 92 % of correct detection and 5 % of false detection rate on the database.
Resumo:
In the pattern recognition research field, Support Vector Machines (SVM) have been an effectiveness tool for classification purposes, being successively employed in many applications. The SVM input data is transformed into a high dimensional space using some kernel functions where linear separation is more likely. However, there are some computational drawbacks associated to SVM. One of them is the computational burden required to find out the more adequate parameters for the kernel mapping considering each non-linearly separable input data space, which reflects the performance of SVM. This paper introduces the Polynomial Powers of Sigmoid for SVM kernel mapping, and it shows their advantages over well-known kernel functions using real and synthetic datasets.
Resumo:
Function approximation is a very important task in environments where the computation has to be based on extracting information from data samples in real world processes. So, the development of new mathematical model is a very important activity to guarantee the evolution of the function approximation area. In this sense, we will present the Polynomials Powers of Sigmoid (PPS) as a linear neural network. In this paper, we will introduce one series of practical results for the Polynomials Powers of Sigmoid, where we will show some advantages of the use of the powers of sigmiod functions in relationship the traditional MLP-Backpropagation and Polynomials in functions approximation problems.
Resumo:
The main purpose of this paper is to investigate theoretically and experimentally the use of family of Polynomial Powers of the Sigmoid (PPS) Function Networks applied in speech signal representation and function approximation. This paper carries out practical investigations in terms of approximation fitness (LSE), time consuming (CPU Time), computational complexity (FLOP) and representation power (Number of Activation Function) for different PPS activation functions. We expected that different activation functions can provide performance variations and further investigations will guide us towards a class of mappings associating the best activation function to solve a class of problems under certain criteria.
Resumo:
We consider the problem of representing a univariate polynomial f(x) as a sum of powers of low degree polynomials. We prove a lower bound of Omega(root d/t) for writing an explicit univariate degree-d polynomial f(x) as a sum of powers of degree-t polynomials.
Resumo:
Corneal-height data are typically measured with videokeratoscopes and modeled using a set of orthogonal Zernike polynomials. We address the estimation of the number of Zernike polynomials, which is formalized as a model-order selection problem in linear regression. Classical information-theoretic criteria tend to overestimate the corneal surface due to the weakness of their penalty functions, while bootstrap-based techniques tend to underestimate the surface or require extensive processing. In this paper, we propose to use the efficient detection criterion (EDC), which has the same general form of information-theoretic-based criteria, as an alternative to estimating the optimal number of Zernike polynomials. We first show, via simulations, that the EDC outperforms a large number of information-theoretic criteria and resampling-based techniques. We then illustrate that using the EDC for real corneas results in models that are in closer agreement with clinical expectations and provides means for distinguishing normal corneal surfaces from astigmatic and keratoconic surfaces.
Resumo:
Aim The misuse and abuse of Enduring Powers of Attorney (EPAs) by attorneys, particularly in relation to financial decision-making, is a growing concern. This paper explores the opportunities to enhance accountability of attorneys at the time of the execution of the document in Queensland. Method A four stage multi-method design comprised a critical reference group; semi-structured interviews with 32 principals or potential principals, attorneys and witnesses; two focus groups with service providers and a state wide survey of 76 principals, attorneys and witnesses. Results Across all methods and user groups, understanding the role and obligations of the attorney in an EPA was consistently identified as problematic. Conclusions Promoting accountability and understanding can be addressed by greater attention to the role of the attorney in the forms/ guidelines and in the structure and witnessing of the forms, increased direction about record keeping and access to appropriate advice and support.
Resumo:
We investigate gender-based wage undervaluation in light of FairWork Australia’s major recent decision for social and community service workers. Using regression methods, we demonstrate that wages for employees in female-dominated occupations are significantly lower than for comparable employees in male-dominated and integrated occupations. This undervaluation is present for both male and female employees, and persists after controlling for industry of employment. We then estimate the undervaluation within industry and juxtapose the results with evidence on the industry distribution of award reliance, a proxy for Fair Work Australia’s equal remuneration powers. There is not a strong relationship within industries between the extent of gender-based undervaluation and award reliance. This suggests that ‘equal remuneration for work of equal or comparable value’ is unlikely to be achieved universally by Fair Work Australia without substantial spillovers between awards and non-award agreements.
Resumo:
Introduction This study reports on the application of the Manchester Driver Behaviour Questionnaire (DBQ) to examine the self-reported driving behaviours (e.g., speeding, errors & aggressive manoeuvres) and predict crash involvement among a sample of general Queensland motorists. Material and Methods Surveys were completed by 249 general motorists on-line or via a pen-and-paper format. Results A factor analysis revealed a three factor solution for the DBQ which was consistent with previous Australian-based research. It accounted for 40.5% of the total variance, although some cross-loadings were observed on nine of the twenty items. The internal reliability of the DBQ was satisfactory. However, multivariate analysis using the DBQ revealed little predictive ability of the tool to predict crash involvement or demerit point loss e.g. violation notices. Rather, exposure to the road was found to be predictive of crashes, although speeding did make a small contribution to those who recently received a violation notice. Conclusions Taken together, the findings contribute to a growing body of research that raises questions about the predictive ability of the most widely used driving assessment tool globally. Ongoing research (which also includes official crash and offence outcomes) is required to better understand the actual contribution that the DBQ can make to understanding and improving road safety. Future research should also aim to confirm whether this lack of predictive efficacy originates from broader issues inherent within self-report data (e.g., memory recall problems) or issues underpinning the conceptualisation of the scale.
Resumo:
We consider the following question: Let S (1) and S (2) be two smooth, totally-real surfaces in C-2 that contain the origin. If the union of their tangent planes is locally polynomially convex at the origin, then is S-1 boolean OR S-2 locally polynomially convex at the origin? If T (0) S (1) a (c) T (0) S (2) = {0}, then it is a folk result that the answer is yes. We discuss an obstruction to the presumed proof, and provide a different approach. When dim(R)(T0S1 boolean AND T0S2) = 1, we present a geometric condition under which no consistent answer to the above question exists. We then discuss conditions under which we can expect local polynomial convexity.
Resumo:
We address the problem of local-polynomial modeling of smooth time-varying signals with unknown functional form, in the presence of additive noise. The problem formulation is in the time domain and the polynomial coefficients are estimated in the pointwise minimum mean square error (PMMSE) sense. The choice of the window length for local modeling introduces a bias-variance tradeoff, which we solve optimally by using the intersection-of-confidence-intervals (ICI) technique. The combination of the local polynomial model and the ICI technique gives rise to an adaptive signal model equipped with a time-varying PMMSE-optimal window length whose performance is superior to that obtained by using a fixed window length. We also evaluate the sensitivity of the ICI technique with respect to the confidence interval width. Simulation results on electrocardiogram (ECG) signals show that at 0dB signal-to-noise ratio (SNR), one can achieve about 12dB improvement in SNR. Monte-Carlo performance analysis shows that the performance is comparable to the basic wavelet techniques. For 0 dB SNR, the adaptive window technique yields about 2-3dB higher SNR than wavelet regression techniques and for SNRs greater than 12dB, the wavelet techniques yield about 2dB higher SNR.
Resumo:
Let k be an integer and k >= 3. A graph G is k-chordal if G does not have an induced cycle of length greater than k. From the definition it is clear that 3-chordal graphs are precisely the class of chordal graphs. Duchet proved that, for every positive integer m, if G m is chordal then so is G(m+2). Brandst `` adt et al. in Andreas Brandsadt, Van Bang Le, and Thomas Szymczak. Duchet- type theorems for powers of HHD- free graphs. Discrete Mathematics, 177(1- 3): 9- 16, 1997.] showed that if G m is k - chordal, then so is G(m+2). Powering a bipartite graph does not preserve its bipartitedness. In order to preserve the bipartitedness of a bipartite graph while powering Chandran et al. introduced the notion of bipartite powering. This notion was introduced to aid their study of boxicity of chordal bipartite graphs. The m - th bipartite power G(m]) of a bipartite graph G is the bipartite graph obtained from G by adding edges (u; v) where d G (u; v) is odd and less than or equal to m. Note that G(m]) = G(m+1]) for each odd m. In this paper we show that, given a bipartite graph G, if G is k-chordal then so is G m], where k, m are positive integers with k >= 4