952 resultados para Polynomial
Resumo:
Several numerical methods for boundary value problems use integral and differential operational matrices, expressed in polynomial bases in a Hilbert space of functions. This work presents a sequence of matrix operations allowing a direct computation of operational matrices for polynomial bases, orthogonal or not, starting with any previously known reference matrix. Furthermore, it shows how to obtain the reference matrix for a chosen polynomial base. The results presented here can be applied not only for integration and differentiation, but also for any linear operation.
Resumo:
Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F , satisfying the following property: for every monic polynomial f(x) = xn + an-1xn-1 + … +a1x + aο over F, with a root in F and aο = (-1)n det(AB), there are nonsingular matrices X, Y ϵ Fnxn such that X A X-1 Y BY-1 has characteristic polynomial f (x). © 2014 © 2014 Taylor & Francis.
Resumo:
Let F be a field with at least four elements. In this paper, we identify all the pairs (A, B) of n x n nonsingular matrices over F, satisfying the following property: for every monic polynomial f (x) = x(n) + a(n-1)x(n-1) +... + a(1)x + a(0) over F, with a root in F and a(0) = (-1)(n) det(AB), there are nonsingular matrices X, Y is an element of F-nxn such that XAX(-1)Y BY-1 has characteristic polynomial f (x).
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015
Resumo:
We say the endomorphism problem is solvable for an element W in a free group F if it can be decided effectively whether, given U in F, there is an endomorphism Φ of F sending W to U. This work analyzes an approach due to C. Edmunds and improved by C. Sims. Here we prove that the approach provides an efficient algorithm for solving the endomorphism problem when W is a two- generator word. We show that when W is a two-generator word this algorithm solves the problem in time polynomial in the length of U. This result gives a polynomial-time algorithm for solving, in free groups, two-variable equations in which all the variables occur on one side of the equality and all the constants on the other side.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In the asymptotic expansion of the hyperbolic specification of the colored Jones polynomial of torus knots, we identify different geometric contributions, in particular Chern-Simons invariant and Reidemeister torsion.
Resumo:
This paper suggests a simple method based on Chebyshev approximation at Chebyshev nodes to approximate partial differential equations. The methodology simply consists in determining the value function by using a set of nodes and basis functions. We provide two examples. Pricing an European option and determining the best policy for chatting down a machinery. The suggested method is flexible, easy to program and efficient. It is also applicable in other fields, providing efficient solutions to complex systems of partial differential equations.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la School of Mathematics and Statistics de la University of Plymouth, United Kingdom, entre abril juliol del 2007.Aquesta investigació és encara oberta i la memòria que presento constitueix un informe de la recerca que estem duent a terme actualment. En aquesta nota estudiem els centres isòcrons dels sistemes Hamiltonians analítics, parant especial atenció en el cas polinomial. Ens centrem en els anomenats quadratic-like Hamiltonian systems. Diverses propietats dels centres isòcrons d'aquest tipus de sistemes van ser donades a [A. Cima, F. Mañosas and J. Villadelprat, Isochronicity for several classes of Hamiltonian systems, J. Di®erential Equations 157 (1999) 373{413]. Aquell article estava centrat principalment en el cas en que A; B i C fossin funcions analítiques. El nostre objectiu amb l'estudi que estem duent a terme és investigar el cas en el que aquestes funcions són polinomis. En aquesta nota formulem una conjectura concreta sobre les propietats algebraiques que venen forçades per la isocronia del centre i provem alguns resultats parcials.
Resumo:
We explore the relationship between polynomial functors and trees. In the first part we characterise trees as certain polynomial functors and obtain a completely formal but at the same time conceptual and explicit construction of two categories of rooted trees, whose main properties we describe in terms of some factorisation systems. The second category is the category Ω of Moerdijk and Weiss. Although the constructions are motivated and explained in terms of polynomial functors, they all amount to elementary manipulations with finite sets. Included in Part 1 is also an explicit construction of the free monad on a polynomial endofunctor, given in terms of trees. In the second part we describe polynomial endofunctors and monads as structures built from trees, characterising the images of several nerve functors from polynomial endofunctors and monads into presheaves on categories of trees. Polynomial endofunctors and monads over a base are characterised by a sheaf condition on categories of decorated trees. In the absolute case, one further condition is needed, a projectivity condition, which serves also to characterise polynomial endofunctors and monads among (coloured) collections and operads.
Resumo:
We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In case Krein's strings with spectral functions of polynomial growth a necessary and su fficient condition for the Krein's correspondence to be continuous is given.