989 resultados para Polymers -- Extrusion process
Resumo:
A blend of 50% Potato Starch (PS), 35% Quality Protein Maize (QPM), and 15% Soybean Meal (SM) were used in the preparation of expanded pellets utilizing a laboratory extruder with a 1.5 × 20.0 × 100.0 mm die-nozzle. The independent variables analyzed were Barrel Temperature (BT) (75-140 °C) and Feed Moisture (FM) (16-30%). The effect of extrusion variables was investigated in terms of Expansion Index (EI), apparent density (ApD), Penetration Force (PF) and Specific Mechanical Energy (SME), viscosity profiles, DSC, crystallinity by X-ray diffraction, and Scanning Electronic Microscopy (SEM). The PF decreased from 30 to 4 kgf with the increase of both independent variables (BT and FM). SME was affected only by FM, and decreased with the increase in this variable. The optimal region showed that the maximum EI was found for BT in the range of 123-140 °C and 27-31% for FM, respectively. The extruded pellets obtained from the optimal processing region were probably not completely degraded, as shown in the structural characterization. Acceptable expanded pellets could be produced using a blend of PS, QPM, and SM by extrusion cooking.
Resumo:
The work describes the programme of activities relating to a mechanical study of the Conform extrusion process. The main objective was to provide a basic understanding of the mechanics of the Conform process with particular emphasis placed on modelling using experimental and theoretical considerations. The experimental equipment used includes a state of the art computer-aided data-logging system and high temperature loadcells (up to 260oC) manufactured from tungsten carbide. Full details of the experimental equipment is presented in sections 3 and 4. A theoretical model is given in Section 5. The model presented is based on the upper bound theorem using a variation of the existing extrusion theories combined with temperature changes in the feed metal across the deformation zone. In addition, constitutive equations used in the model have been generated from existing experimental data. Theoretical and experimental data are presented in tabular form in Section 6. The discussion of results includes a comprehensive graphical presentation of the experimental and theoretical data. The main findings are: (i) the establishment of stress/strain relationships and an energy balance in order to study the factors affecting redundant work, and hence a model suitable for design purposes; (ii) optimisation of the process, by determination of the extrusion pressure for the range of reduction and changes in the extrusion chamber geometry at lower wheel speeds; and (iii) an understanding of the control of the peak temperature reach during extrusion.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
This research studied the effect of thermoplastic extrusion on the expansion index (EI), water absorption index (WAI), water solubility index (WSI), and sensory acceptance (SA) of a snack from rice grits, polished rice grains, and shrimp. A 23 factorial design was used with independent variables, temperature in the third extruder zone (63.2?96.8°C), initial moisture (106.4?173.6 g/kg), and shrimp content (16?184 g/kg), whereas EI, WAI, WSI, and SA were the responses. Through the surface-response methodology, the formulation with 80 g/kg shrimp and 130 g/kg initial moisture processed at 85°C in the third extruder zone was considered optimal. The product had good EI, WAI, and SA, 65.6 g/kg moisture, 24.0 g/kg lipids, 89.5 g/kg proteins, 34.2 kg/kg ashes, 72.4 g/kg fibers, and 714.3 g/kg carbohydrates. The product is an alternative for using rice grit, which has low commercial value, while also fully using the regional shrimp.
Resumo:
Aquests apunts corresponen a una introducció a la tecnologia dels plàstics. Es tracta d'una visió general dels processos de transformació en la qual s'analitzen tant les tècniques concretes (injecció, extrusió...) com el comportament del material durant el processament. Per això, el temari comença amb una descripció de les propietats dels materials més rellevants per a la seva transformació (comportament tèrmic i reològic). Durant la descripció de les tècniques es posa l'èmfasi en com el processament pot modular les propietats del material. Tot i que el temari inclou tant els termoplàstics com els termoestables i elastòmers, donem més importància als primers
Resumo:
Aquests apunts corresponen a una introducció a la tecnologia dels plàstics. Es tracta d'una visió general dels processos de transformació en la qual s'analitzen tant les tècniques concretes (injecció, extrusió...) com el comportament del material durant el processament. Per això, el temari comença amb una descripció de les propietats dels materials més rellevants per a la seva transformació (comportament tèrmic i reològic). Durant la descripció de les tècniques es posa l'èmfasi en com el processament pot modular les propietats del material. Tot i que el temari inclou tant els termoplàstics com els termoestables i elastòmers, donem més importància als primers
Resumo:
Research on the stability of flavours during high temperature extrusion cooking is reviewed. The important factors that affect flavour and aroma retention during the process of extrusion are illustrated. A substantial number of flavour volatiles which are incorporated prior to extrusion are normally lost during expansion, this is because of steam distillation. Therefore, a general practice has been to introduce a flavour mix after the extrusion process. This extra operation requires a binding agent (normally oil), and may also result in a non-uniform distribution of the flavour and low oxidative stability of the flavours exposed on the surface. Therefore, the importance of encapsulated flavours, particularly the beta -cyclodextrin-flavour complex, is highlighted in this paper.
Resumo:
MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.
Resumo:
Bovine rumen protein with two levels of residual lipids (1.9 per cent or 3.8 per cent) was subjected to thermoplastic extrusion under different temperatures and moisture contents. Protein solubility in different buffers, disulphide cross-linking and molecular weight distribution were determined on the extrudates. After extrusion, samples with 1.9 per cent residual lipids content had a higher concentration of protein insoluble by undetermined forces, irrespective of feed moisture and processing temperature used. Lipid content of 3.8 per cent in the feed material resulted in more protein participating in the extrudate network through non-covalent interactions (hydrophobic and electrostatic) and disulphide bonds. A small dependency of the extrusion process on moisture and temperature and a marked dependency on lipid content, especially phospholipid, was observed, Electrophoresis under non-reducing conditions showed that protein extrusion with low feed moisture promoted high molecular breakdown inside the barrel, probably due to intense shear force, and further protein aggregation at the die end
Resumo:
MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.
Resumo:
This study aims to prepare biodegradable films from cassava starch, poly (butylene adipate-co-terephthalate) (PBAT), and montmorillonite (MMT) using blow-extrusion process and analyze the effects of different types and concentrations of MMT on the microstructure, physicochemical, and mechanical properties of the resulting films. The films were produced by blending 30% of PBAT with glycerol (17.5%), starch (49.0-52.5%), and four different types of montmorillonite (Cloisite® Na+, 10A, 15A, and 30B) at two different concentrations (1.75% and 3.5%). All the films prepared in this study showed an increase in the basal spacing of MMT layers. In particular, the films with 10A and 30B showed the highest increase in intercalation basal spacing, suggesting the formation of intercalated composites. The addition of nanoclays decreased the elongation of films. The addition of Cloisite® 10A resulted in films with the lowest WVP values and the highest stability to water adsorption under different RH conditions.
Resumo:
The aim of this experiment was to evaluate how susceptible spores become to mechanical damage during food extrusion after being submitted to CO2. B. stearothermophilus spores sowed to corn and soy mix were submitted to 99% CO2 for 10 days and extruded in a single-screw extruder. The treatments were: T1 - spore-containing samples, extruded at screw rotational speed of 65 rpm and barrel wall temperature of 80 °C; T2 - as T1, except for screw rotational speed of 150 rpm; and T3 - as T2, except that samples were submitted to the modified atmosphere. The results for cell viability, minimum and maximum residence times, and static pressure were T1 - 19.90 ± 3.24%, 123.3 ± 14.50 seconds; 203.3 ± 14.05 seconds; 2.217 ± 62 kPa; T2 - 21.42 ± 8.24%, 70.00 ± 5.77 seconds; 170.00 ± 4.67 seconds; 2.310 ± 107 kPa; and T3 - 11.06 ± 2.46%, 86.00 ± 7.23 seconds; 186.00 ± 7.50 seconds; 2.403 ± 93 kPa, respectively. It was concluded that the extrusion process did reduce the cell count. However, screw rotational speed variation or CO2 pre-treatment did not affect cell viability.
Resumo:
Although Brazil is a country of tradition in both the production and consumption of coffee, the most of the coffee is consumed as a beverage, which reduces greatly the competitiveness on international market, for reducing the chances of supplying the product under other forms of consumption. Owing to that, the aim of this study was developing a precooked mixed flour containing coffee powder and rice for use in coffee flavored products. Mixtures of rice and coffee in the proportions of 900:100, 850:150 and 800:200 g, respectively, were processed in a single screw extruder (Brabender DS-20, Duisburg, German) and the effect of the extrusion process on the variables moisture content (16%, 18% and 20%) and temperature in the third extruding zone (140 °C, 160 °C and 180 °C) was studied. The results for expansion index ranged from 2.91 to 11.11 mm in diameter; the water absorption index from 4.59 to 6.33 g gel/g sample and the water solubility index varied from 4.05% to 8.57%. These results showed that, despite coffee powder influenced the variables studied, the expanded product after milling resulted in a extruded mixture with good absorption and water solubility indices, which favors the use of the precooked mixed flour for human consumption.
Resumo:
Bovine rumen protein with two levels of residual lipids (1.9% or 3.8%) was subjected to thermoplastic extrusion under different temperatures and moisture contents. Protein Solubility in different buffers, disulphide cross-linking and molecular weight distribution were determined on the extrudates. After extrusion, samples with 1.9% residual lipids content had a higher concentration of protein insoluble by undetermined forces, irrespective of feed moisture and processing temperature used. Lipid content of 3.8% in the feed material resulted in more protein participating in the extrudate network through non-covalent interactions (hydrophobic and electrostatic) and disulphide bonds. A small dependency of the extrusion process on moisture and temperature and a marked dependency on lipid content, especially phospholipid, was observed, Electrophoresis under non-reducing conditions showed that protein extrusion with low feed moisture promoted high molecular breakdown inside the barrel, probably due to intense shear force, and further protein aggregation at the die end. (C) 2009 Elsevier Ltd. All rights reserved.