984 resultados para Polymers (Organic chemistry) (Chemical synthesis)
Resumo:
Neste trabalho foram sintetizados a poli-2-etinilpiridina (P2EP), poli-4etinilpiridina (P4EP), o iodeto de poli(2-N-t-butilpiridiniumilacetileno) (P2EPtBu) e a poli-β-etinilnaftaleno (Pβ:EN), os quais são poliacetilenos substituídos. Estes polímeros, juntamente com o cloreto de poli(2-piridínio-2-piridilacetileno) (P2EPH), foram caracterizados por espectroscopia vibracional no infravermelho e Raman. Estes polímeros apresentaram variação na posição das bandas Raman com a energia da radiação excitante - chamada dispersão Raman ou fotosseletividade - da ordem de 10 cm-1, bem inferior ao apresentado pelo poliacetileno (cerca de 60 cm-1). Este deslocamento foi interpretado utilizando-se dois dos modelos existentes para descrever este fenômeno: o Modelo de Modo de Amplitude (AMM) e o Modelo de Coordenada de Conjugação Efetiva (ECCM), os quais fornecem informações sobre a estrutura polimérica e sobre seus níveis eletrônicos. Utilizando-se o AMM foi possível obter informações sobre os níveis eletrônicos excitados de mesma simetria que o estado eletrônico fundamental. Por outro lado, o ECCM, com a ajuda de cálculos DFT, mostrou diferenças na extensão da conjugação e no grau de dimerização entre o P2EP na forma cis e trans e indicou que este polímero apresentava, predominantemente, a estrutura cis, fato este confirmado pelos espectros no infravermelho. A dopagem com I2 provocou efeitos diferentes na estrutura dos polímeros. Os espectros no infravermelho dos polímeros dopados indicaram que o P2EP e o P2EPH apresentaram aumento na quantidade de segmentos cis enquanto o P2EPtBu apresentou diminuição na quantidade desses segmentos. Os espectros Raman dos polímeros dopados confirmaram os dados dos espectros no infravermelho. Esta diferença foi interpretada como sendo devida à diferença no volume do substituinte, pois grupos volumosos favorecem o isômero trans-cisóide onde a distância entre os substituintes é maior. A dopagem também levou a um aumento na condutividade dos polímeros, porém os valores de condutividade obtidos foram bem inferiores que os apresentados pelo poliacetileno dopado (10-5 a 10-7 contra 102 S cm-1, tipicamente).
Resumo:
This is a comprehensive study of the many facets of an entirely online organic chemistry course. Online homework with structure-drawing capabilities was found to be more effective than written homework. Online lecture was found to be just as effective as in-person lecture, and students prefer an online lecture format with shorter Webcasts. Online office hours were found to be effective, and discussion sessions can be placed online as well. A model was created that explains 36.1% of student performance based on GPA, ACT Math score, grade in previous chemistry course, and attendance at various forms of discussion. Online exams have been created which test problem-solving skills and is instantly gradable. In these exams, students can submit answers until time runs out for different numbers of points. These facets were combined effectively to create an entirely online organic chemistry course which students prefer over the in-person alternative. Lastly, there is a vision for where online organic chemistry is going and what can be done to improve education for all.
Resumo:
Hexaphenylbiadamantane-based microporous organic polymers (MOPs) were successfully synthesized by Suzuki coupling under mild conditions. The obtained MOPs show high surface area (891 m2 g−1), ultra-high thermal (less than 40% mass loss at temperatures up to 1000 °C) and chemical (no apparent decomposition in organic solvents for more than 7 days) stability, gas (H2, CO2, CH4) capture capabilities and vapor (benzene, hexane) adsorption. These combined abilities render the synthesized MOPs an attractive candidate as thermo-chemically stable adsorbents for practical use in gas storage and pollutant vapor adsorption.
Resumo:
Human S100A12 (extracellular newly identified RAGE (receptor for advanced glycosylation end products)binding protein), a new member of the S100 family of EF-hand calcium-binding proteins, was chemically synthesised using highly optimised 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate/tert-butoxycarbonyl in situ neutralisation solid-phase chemistry. Circular dichroism studies indicated that CaCl2 decreased the helical content by 27% whereas helicity was marginally increased by ZnCl2. The propensity of S100A12 to dimerise was examined by electrospray ionisation time-of-flight mass spectrometry which clearly demonstrated the prevalence of the non-covalent homodimer (20 890 Da). Importantly, synthetic human S100A12 in the nanomolar range was chemotactic for neutrophils and macrophages in vitro. (C) 2001 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The 101 residue protein early pregnancy factor (EPF), also known as human chaperonin 10, was synthesized from four functionalized, but unprotected, peptide segments by a sequential thioether ligation strategy. The approach exploits the differential reactivity of a peptide-NHCH2CH2SH thiolate with XCH2CO-peptides, where X = Cl or I/Br. Initial model studies with short functionalized (but unprotected) peptides showed a significantly faster reaction of a peptide-NHCH2CH2SH thiolate with a BrCH2CO-peptide than with a CICH2CO-peptide, where thiolate displacement of the halide leads to chemoselective formation of a thioether surrogate for the Gly-Gly peptide bond. This rate difference was used as the basis of a novel sequential ligation approach to the synthesis of large polypeptide chains. Thus, ligation of a model bifunctional N-alpha-chloroacetyl, C-terminal thiolated peptide with a second N-alpha-bromoacetyl peptide demonstrated chemoselective bromide displacement by the thiol group. Further investigations showed that the relatively unreactive N-alpha-chloroacetyl peptides could be activated by halide exchange using saturated KI solutions to yield the highly reactive No-iodoacetyl peptides. These findings were used to formulate a sequential thioether ligation strategy for the synthesis of EPF, a 101 amino acid protein containing three Gly-Gly sites approximately equidistantly spaced within the peptide chain. Four peptide segments or cassettes comprising the EPF protein sequence (BrAc-[EPF 78-101] 12, ClAc-[EPF 58-75]-[NHCH2CH2SH] 13, ClAc-[EPF 30-55]-[NHCH2CH2SH] 14, and Ac-[EPF 1-27]-[NHCH2CH2SH] 15) of EPF were synthesized in high yield and purity using Boc SPPS chemistry. In the stepwise sequential ligation strategy, reaction of peptides 12 and 13 was followed by conversion of the N-terminal chloroacetyl functional group to an iodoacetyl, thus activating the product peptide for further ligation with peptide 14. The process of ligation followed by iodoacetyl activation was repeated to yield an analogue of EPF (EPF psi(CH2S)(28-29,56-57,76-77)) 19 in 19% overall yield.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The small amounts of antibacterial peptides that can be isolated from insects do not allow detailed studies of their range of activity, side-chain sugar requirements, or their conformation, factors that frequently play roles in the mode of action. In this paper, we report the solid-phase step-by-step synthesis of diptericin, an 82-mer peptide, originally isolated from Phormia terranovae. The unglycosylated peptide was purified to homogeneity by conventional reversed-phase high performance liquid chromatography, and its activity spectrum was compared to that Of synthetic unglycosylated drosocin, which shares strong sequence homology with diptericin's N-terminal domain. Diptericin appeared to have antibacterial activity:for only a limited number of Gram-negative bacteria. Diptericin's submicromolar potency against Escherichia coli strains indicated that, in a manner similar to drosocin, the presence of the carbohydrate side chain is not,necessary to kill bacteria. Neither the N-terminal, drosocin-analog fragment, nor the C-terminal, glycine-rich attacin-analog region was active against any of the bacterial strains studied, regardless of whether the Gal-GalNAc disaccharide units were attached. This suggested that the active site of diptericin fell outside the drosocin or attacin homology domains. In addition, the conformation of diptericin did not seem to play a role in the antibacterial activity, as was demonstrated by the complete lack of ordered structure by two-dimensional nuclear magnetic resonance spectroscopy and circular dichroism. Diptericin completely killed bacteria within I h, considerably faster than drosocin and the attacins; unlike some other, fast-acting antibacterial peptides, diptericin did not lyse normal mammalian cells. Taken together, these data suggest diptericin does not belong to any known class of antibacterial peptides.
Resumo:
The 32-residue peptide, RK-1, a novel kidney-derived three disulfide-bonded member of the antimicrobial alpha-defensin family, was synthesized by the continuous now Fmoc-solid phase method. The crude, cleaved and S-reduced Linear peptide was both efficiently folded and oxidized in an acidic solution of aqueous dimethyl sulfoxide. Following purification of the resulting product, it was shown by a variety of analytical techniques, including matrix assisted laser desorption time of flight mass spectrometry, to possess a very high degree of purity. The disulfide bond pairing of the synthetic peptide was determined by H-1-NMR spectroscopy and confirmed to be a Cys(1)-Cys(6), Cys(2)-Cys(4), Cys(3)-Cys(5) arrangement similar to other mammalian alpha-defensin peptides. The synthetic RK-1 was also shown to inhibit the growth of Escherichia coli type strain NCTC 10418, Copyright (C) 2000 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
A novel conotoxin belonging to the 'four-loop' structural class has been isolated from the venom of the piscivorous cone snail Conus tulipa. It was identified using a chemical-directed strategy based largely on mass spectrometric techniques. The new toxin, conotoxin TVIIA, consists of 30 amino-acid residues and contains three disulfide bonds. The amino-acid sequence was determined by Edman analysis as SCSGRDSRCOOVCCMGLMCSRGKCVSIYGE where O = 4-transl-hydroxyproline. Two under-hydroxylated analogues, [Pro10]TVIIA and [Pro10,11]TVIIA, were also identified in the venom of C. tulipa. The sequences of TVIIA and [Pro10]TVIIA were further verified by chemical synthesis and coelution studies with native material. Conotoxin TVIIA has a six cysteine/four-loop structural framework common to many peptides from Conus venoms including the omega-, delta- and kappa-conotoxins. However, TVIIA displays little sequence homology with these well-characterized pharmacological classes of peptides, but displays striking sequence homology with conotoxin GS, a peptide from Conus geographus that blocks skeletal muscle sodium channels. These new toxins and GS share several biochemical features and represent a distinct subgroup of the four-loop conotoxins.
Resumo:
Solid-phase organic chemistry has rapidly expanded in the last decade, and, as a consequence, so has the need for the development of supports that can withstand the extreme conditions required to facilitate some reactions. The authors here prepare a thermally stable, grafted fluoropolymer support (see Figure for an example) in three solvents, and found that the penetration of the graft was greatest in dichloromethane.
Resumo:
Novel 2-amino-1,3-thiazole-5-carboxylates have been synthesised in high yield by unprecedented ultrasonic and thermally mediated nucleophilic displacement of bromide from ethyl 2-bromo-1,3-thiazole-5-carboxylate by primary, secondary and aryl amines.
Resumo:
In this study, an efficient methodology for the preparation of carbohydrate-RNA conjugates was established, which involved the use of 3,4~diethoxy-3-cyclobutene-l,2- dione (diethyl squarate) as the linking reagent. First, a glycan moiety containing an amino group reacted with diethyl squarate to form an activated glycan, which further reacted with an amino modified oligoribonucleotide to form a glycoconjugate under slightly basic conditions. The effect of glycosylation on the stability of RNA molecules was evaluated on two glycoconjugates, monomannosyl UlO-mer and dimannosyl UlO-mer. In the synthesis of aromatic fluorescent ribosides, perbenzylated ribofuranosyl pyrene and phenanthrene were synthesized from perbenzylated ribolactone. Deprotection of benzyl-protected ribofuranosyl phenanthrene and pyrene by boron tribromide gave ribofuranosyl phenanthrene and ribopyranosyl pyrene, respectively. UV/vis and fluorescent properties of the ribosides were characterized.