961 resultados para Polymeric additional pipe
Resumo:
The current study focuses on the analysis of pressure surge damping in single pipeline systems generated by a fast change of flow, conditions. A dimensionless form of pressurised transient flow equations was developed. presenting the main advantage of being independent of the system characteristics. In lack of flow velocity profiles. the unsteady friction in turbulent regimes is analysed based on two new empirical corrective-coefficients associated with local and convective acceleration terms. A new, surge damping approach is also presented taking into account the pressure peak time variation. The observed attenuation effect in the pressure wave for high deformable pipe materials can be described by a combination of the non-elastic behaviour of the pipe-wall with steady and unsteady friction effects. Several simulations and experimental tests have been carried out. in order to analyse the dynamic response of single pipelines with different characteristics, such as pipe materials. diameters. thickness. lengths and transient conditions.
Resumo:
In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.
Resumo:
Zinc oxide (ZnO) is an electroluminescent (EL) material that can emit light in different regions of electromagnetic spectrum when electrically excited. Since ZnO is chemically stable, inexpensive and environmentally friendly material, its EL property can be useful to construct solid-state lamps for illumination or as UV emitter. We present here two wet chemical methods to prepare ZnO thin-films: the Pechini method and the sol-gel method, with both methods resulting in crystalline and transparent films with transmittance > 85% at 550 nm. These films were used to make thin-film electroluminescent devices (TFELD) using two different insulator layers: lithium fluoride (LiF) or silica (SiO2). All the devices exhibit at least two wide emission bands in the visible range centered at 420 nm and at 380 nm attributed to the electronic defects in the ZnO optical band gap. Besides these two bands, the device using SiO2 and ZnO film obtained via sol-gel exhibits an additional band in the UV range centered at 350 nm which can be attributed to excitonic emission. These emission bands of ZnO can transfer their energy when a proper dopant is present. For the devices produced the voltage-current characteristics were measured in a specific range of applied voltage. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Polymeric Precursor Method has proved suitable for synthesizing reactive powders using low temperatures of calcination, especially when compared with conventional methods. However, during the thermal decomposition of the polymeric precursor the combustion event can be releases an additional heat that raises the temperature of the sample in several tens of degrees Celsius above the set temperature of the oven. This event may be detrimental to some material types, such as the titanium dioxide semiconductor. This ceramic material has a phase transition at around 600 ° C, which involves the irreversible structural rearrangement, characterized by the phase transition from anatase to rutile TiO2 phase. The control of the calcination step then becomes very important because the efficiency of the photocatalyst is dependent on the amount of anatase phase in the material. Furthermore, use of dopant in the material aims to improve various properties, such as increasing the absorption of radiation and in the time of the excited state, shifting of the absorption edge to the visible region, and increasing of the thermal stability of anatase. In this work, samples of titanium dioxide were synthesized by the Polymeric Precursor Method in order to investigate the effect of Fe (III) doping on the calcination stages. Thermal analysis has demonstrated that the Fe (III) insertion at 1 mol% anticipates the organic decomposition, reducing the combustion event in the final calcination. Furthermore, FTIR-PAS, XRD and SEM results showed that organic matter amount was reduced in the Fe (III)-doped TiO2 sample, which reduced the rutile phase amount and increased the reactivity and crystallinity of the powder samples.
Resumo:
Abstract The goal of this project is to evaluate the effectiveness of bioswells in protecting water quality from urban runoff. The hypothesis tested in this project is that water in bioswells improves water quality. Water quality in both a bioswell and an underground concrete lined ditch, both containing ground and surface water, were tested for certain water quality parameters. These parameters consisted of: Dissolved Oxygen, pH, water temperature, weather temperature, Total Dissolved Solids, Specific Conductivity, Alkalinity, Total Dissolved Carbon, Chemical Oxygen Demand, and depth and width of the sampling site. An additional contaminant that was looked at was motor oil. This was measured by comparing Total Organic Carbon with Chemical Oxygen Demand. A variety of different methods to measure the water quality parameters were utilized. The concrete site had more stable readings, but much higher water temperatures. However, the bioswell water is mainly from surface water runoff, and the underground concrete lined pipe is from underground water, so the two cannot be directly compared. The bioswell had high readings, especially pertaining to Oxygen Demand, Total Organic Carbon, and Specific Conductivity in early test dates. But, these readings improved as they were filtered though the bioswell. As plant activity increased and the weather began to warm up there were more stable readings. It is concluded that bioswells are an effective way to reduce problems associated with urban runoff pertaining to certain water quality parameters.
Resumo:
Un caloducto en bucle cerrado o Loop Heat Pipe (LHP) es un dispositivo de transferencia de calor cuyo principio de operación se basa en la evaporación/condensación de un fluido de trabajo, que es bombeado a través de un circuito cerrado gracias a fuerzas de capilaridad. Gracias a su flexibilidad, su baja masa y su mínimo (incluso nulo) consumo de potencia, su principal aplicación ha sido identificada como parte del subsistema de control térmico de vehículos espaciales. En el presente trabajo se ha desarrollado un LHP capaz de funcionar eficientemente a temperaturas de hasta 125 oC, siguiendo la actual tendencia de los equipos a bordo de satélites de incrementar su temperatura de operación. En la selección del diseño optimo para dicho LHP, la compatibilidad entre materiales y fluido de trabajo se identificó como uno de los puntos clave. Para seleccionar la mejor combinación, se llevó a cabo una exhaustiva revisión del estado del arte, además de un estudio especifico que incluía el desarrollo de un banco de ensayos de compatibilidad. Como conclusión, la combinación seleccionada como la candidata idónea para ser integrada en el LHP capaz de operar hasta 125 oC fue un evaporador de acero inoxidable, líneas de titanio y amoniaco como fluido de trabajo. En esa línea se diseñó y fabricó un prototipo para ensayos y se desarrolló un modelo de simulación con EcosimPro para evaluar sus prestaciones. Se concluyó que el diseño era adecuado para el rango de operación definido. La incompatibilidad entre el fluido de trabajo y los materiales del LHP está ligada a la generación de gases no condensables. Para un estudio más detallado de los efectos de dichos gases en el funcionamiento del LHP se analizó su comportamiento con diferentes cantidades de nitrógeno inyectadas en su cámara de compensación, simulando un gas no condensable formado en el interior del dispositivo. El estudio se basó en el análisis de las temperaturas medidas experimentalmente a distintos niveles de potencia y temperatura de sumidero o fuente fría. Adicionalmente, dichos resultados se compararon con las predicciones obtenidas por medio del modelo en EcosimPro. Las principales conclusiones obtenidas fueron dos. La primera indica que una cantidad de gas no condensable más de dos veces mayor que la cantidad generada al final de la vida de un satélite típico de telecomunicaciones (15 años) tiene efectos casi despreciables en el funcionamiento del LHP. La segunda es que el principal efecto del gas no condensable es una disminución de la conductancia térmica, especialmente a bajas potencias y temperaturas de sumidero. El efecto es más significativo cuanto mayor es la cantidad de gas añadida. Asimismo, durante la campaña de ensayos se observó un fenómeno no esperado para grandes cantidades de gas no condensable. Dicho fenómeno consiste en un comportamiento oscilatorio, detectado tanto en los ensayos como en la simulación. Este efecto es susceptible de una investigación más profunda y los resultados obtenidos pueden constituir la base para dicha tarea. ABSTRACT Loop Heat Pipes (LHPs) are heat transfer devices whose operating principle is based on the evaporation/condensation of a working fluid, and which use capillary pumping forces to ensure the fluid circulation. Thanks to their flexibility, low mass and minimum (even null) power consumption, their main application has been identified as part of the thermal control subsystem in spacecraft. In the present work, an LHP able to operate efficiently up to 125 oC has been developed, which is in line with the current tendency of satellite on-board equipment to increase their operating temperatures. In selecting the optimal LHP design for the elevated temperature application, the compatibility between the materials and working fluid has been identified as one of the main drivers. An extensive literature review and a dedicated trade-off were performed, in order to select the optimal combination of fluids and materials for the LHP. The trade-off included the development of a dedicated compatibility test stand. In conclusion, the combination of stainless steel evaporator, titanium piping and ammonia as working fluid was selected as the best candidate to operate up to 125 oC. An LHP prototype was designed and manufactured and a simulation model in EcosimPro was developed to evaluate its performance. The first conclusion was that the defined LHP was suitable for the defined operational range. Incompatibility between the working fluid and LHP materials is linked to Non Condensable Gas (NCG) generation. Therefore, the behaviour of the LHP developed with different amounts of nitrogen injected in its compensation chamber to simulate NCG generation, was analyzed. The LHP performance was studied by analysis of the test results at different temperatures and power levels. The test results were also compared to simulations in EcosimPro. Two additional conclusions can be drawn: (i) the effects of an amount of more than two times the expected NCG at the end of life of a typical telecommunications satellite (15 years) is almost negligible on the LHP operation, and (ii) the main effect of the NCG is a decrease in the LHP thermal conductance, especially at low temperatures and low power levels. This decrease is more significant with the progressive addition of NCG. An unexpected phenomenon was observed in the LHP operation with large NCG amounts. Namely, an oscillatory behaviour, which was observed both in the tests and the simulation. This effect provides the basis for further studies concerning oscillations in LHPs.
Resumo:
This thesis work deals with a mathematical description of flow in polymeric pipe and in a specific peristaltic pump. This study involves fluid-structure interaction analysis in presence of complex-turbulent flows treated in an arbitrary Lagrangian-Eulerian (ALE) framework. The flow simulations are performed in COMSOL 4.4, as 2D axial symmetric model, and ABAQUS 6.14.1, as 3D model with symmetric boundary conditions. In COMSOL, the fluid and structure problems are coupled by monolithic algorithm, while ABAQUS code links ABAQUS CFD and ABAQUS Standard solvers with single block-iterative partitioned algorithm. For the turbulent features of the flow, the fluid model in both codes is described by RNG k-ϵ. The structural model is described, on the basis of the pipe material, by Elastic models or Hyperelastic Neo-Hookean models with Rayleigh damping properties. In order to describe the pulsatile fluid flow after the pumping process, the available data are often defective for the fluid problem. Engineering measurements are normally able to provide average pressure or velocity at a cross-section. This problem has been analyzed by McDonald's and Womersley's work for average pressure at fixed cross section by Fourier analysis since '50, while nowadays sophisticated techniques including Finite Elements and Finite Volumes exist to study the flow. Finally, we set up peristaltic pipe simulations in ABAQUS code, by using the same model previously tested for the fl uid and the structure.
Resumo:
Split-plot design (SPD) and near-infrared chemical imaging were used to study the homogeneity of the drug paracetamol loaded in films and prepared from mixtures of the biocompatible polymers hydroxypropyl methylcellulose, polyvinylpyrrolidone, and polyethyleneglycol. The study was split into two parts: a partial least-squares (PLS) model was developed for a pixel-to-pixel quantification of the drug loaded into films. Afterwards, a SPD was developed to study the influence of the polymeric composition of films and the two process conditions related to their preparation (percentage of the drug in the formulations and curing temperature) on the homogeneity of the drug dispersed in the polymeric matrix. Chemical images of each formulation of the SPD were obtained by pixel-to-pixel predictions of the drug using the PLS model of the first part, and macropixel analyses were performed for each image to obtain the y-responses (homogeneity parameter). The design was modeled using PLS regression, allowing only the most relevant factors to remain in the final model. The interpretation of the SPD was enhanced by utilizing the orthogonal PLS algorithm, where the y-orthogonal variations in the design were separated from the y-correlated variation.
Resumo:
Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
The design of a lateral line for drip irrigation requires accurate evaluation of head losses in not only the pipe but in the emitters as well. A procedure was developed to determine localized head losses within the emitters by the formulation of a mathematical model that accounts for the obstruction caused by the insertion point. These localized losses can be significant when compared with tire total head losses within the system due to the large number of emitters typically installed along the lateral line. Air experiment was carried out by altering flow characteristics to create Reynolds numbers (R) from 7,480 to 32,597 to provide turbulent flow and a maximum velocity of 2.0 m s(-1). The geometry of the emitter was determined by an optical projector and sensor An equation was formulated to facilitate the localized head loss calculation using the geometric characteristics of the emitter (emitter length, obstruction ratio, and contraction coefficient). The mathematical model was tested using laboratory measurements on four emitters. The local head loss was accurately estimated for the Uniram (difference of +13.6%) and Drip Net (difference of +7.7%) emitters, while appreciable deviations were found for the Twin Plus (-21.8%) and Tiran (+50%) emitters. The head loss estimated by the model was sensitive to the variations in the obstruction area of the emitter However, the variations in the local head loss did not result in significant variations in the maximum length of the lateral lines. In general, for all the analyzed emitters, a 50% increase in the local head loss for the emitters resulted in less than an 8% reduction in the maximum lateral length.
Resumo:
The objective of this work was to develop and validate a rapid Reversed-Phase High-Performance Liquid Chromatography method for the quantification of 3,5,3 '-triiodothyroacetic acid (TRIAC) in nanoparticles delivery system prepared in different polymeric matrices. Special attention was given to developing a reliable reproductive technique for the pretreatment of the samples. Chromatographic runs were performed on an Agilent 1200 Series HPLC with a RP Phenomenex (R) Gemini C18 (150 x 4, 6 mm i.d., 5 mu m) column using acetonitrile and triethylamine buffer 0.1% (TEA) (40 : 60 v/v) as a mobile phase in an isocratic elution, pH 5.6 at a flow rate of 1 ml min(-1). TRIAC was detected at a wavelength of 220 nm. The injection volume was 20 mu l and the column temperature was maintained at 35 degrees C. The validation characteristics included accuracy, precision, specificity, linearity, recovery, and robustness. The standard curve was found to have a linear relationship (r(2) - 0.9996) over the analytical range of 5-100 mu g ml(-1) . The detection and quantitation limits were 1.3 and 3.8 mu g ml(-1), respectively. The recovery and loaded TRIAC in colloidal system delivery was nearly 100% and 98%, respectively. The method was successfully applied in polycaprolactone, polyhydroxybutyrate, and polymethylmethacrylate nanoparticles.
Resumo:
A simple and easy approach to produce polymeric microchips with integrated copper electrodes for capacitively coupled contactless conductivity detection (CD) is described. Copper electrodes were fabricated using a printed circuit board (PCB) as an inexpensive thin-layer of metal. The electrode layout was first drawn and laser printed on a wax paper sheet. The toner layer deposited on the paper sheet was thermally transferred to the PCB surface working as a mask for wet chemical etching of the copper layer. After the etching step, the toner was removed with an acetonitrile-dampened cotton. A poly(ethylene terephthalate) (PET) film coated with a thin thermo-sensitive adhesive layer was used to laminate the PCB plate providing an insulator layer of the electrodes to perform CID measurements. Electrophoresis microchannels were fabricated in poly(dimethylsiloxane) (PDMS) by soft lithography and reversibly sealed against the PET film. These hybrid PDMS/PET chips exhibited a stable electroosmotic mobility of 4.25 +/- 0.04 x 10(-4) V cm(-2) s(-1), at pH 6.1, over fifty runs. Efficiencies ranging from 1127 to 1690 theoretical plates were obtained for inorganic cations.