940 resultados para Polymer films
Resumo:
In recent times, blended polymers have shown a lot of promise in terms of easy processability in different shapes and forms. In the present work, polyaniline emeraldine base (PANi-EB) was doped with camphor sulfonic acid (CSA) and combined with the conducting polymer polyfluorene (PF) as well as the insulating polymer polyvinyl chloride (PVC) to synthesize CSA doped PANi-PF and PANi-PVC blended polymers. It is well known that PANi when doped with CSA becomes highly conducting. However, its poor mechanical properties, such as low tensile, compressive, and flexural strength render PANi a non-ideal material to be processed for its various practical applications, such as electromagnetic shielding, anti-corrosion shielding, photolithography and microelectronic devices etc. Thus the search for polymers which are easily processable and are capable of showing high conductivity still continues. PANi-PVC blend was prepared, which showed low conductivity which is limiting factor for certain applications. Therefore, another processable polymer PF was chosen as conducting matrix. Conducting PF can be easily processed into various shapes and forms. Therefore, a blend mixture was prepared by using PANi and PF through the use of CSA as a counter ion which forms a "bridge" between the two polymeric components of the inter-polymer complex. Two blended polymers have been synthesized and investigated for their conductivity behaviour. It was observed that the blended film of CSA doped PANi-PVC showed a room temperature electrical conductivity of 2.8 × 10-7 S/cm where as the blended film made by CSA doped PANi with conducting polymer PF showed a room temperature conductivity of 1.3 × 10-5 S/cm. Blended films were irradiated with 100 MeV silicon ions with a view to increase their conductivity with a fluence ranging from 1011 ions to 1013 per cm2 from 15 UD Pelletron accelerator at NSC, New Delhi.
Resumo:
We report second harmonic generation in a new class of organic materials, namely donor-acceptor substituted all-trans butadienes doped in poly(methyl methacrylate) or polystyrene and oriented by corona poling at elevated temperatures. Second harmonic measurements were made at room temperature. The observed d33 coefficients are greater than those of potassium dihydrogen phosphate or 4-dimethylamino-4'-nitrostilbene doped in similar polymer matrices. Rotational diffusion coefficients estimated from the decay characteristics of the second harmonic intensity in the polymer films indicate that the polymer matrix plays a major role in stabilizing the dopants in a nonlinear optics conducive environment.
Resumo:
We report the first detailed study of the kinetics of dispersion of nanoparticles in thin polymer films using temperature dependent in situ X-ray scattering measurements. We show a comparably enhanced dispersion at higher temperatures for systems which are otherwise phase segregated at room temperature. Detailed analysis of the time dependent X-ray reflectivity and diffuse scattering data allows us to explore the out-of-plane and in-plane mobility of the nanoparticles in the polymer films. While the out-of-plane motion is diffusive with a diffusion coefficient almost two orders of magnitude lower than that expected in bulk polymer, the in-plane one is found to be super-diffusive resulting in significantly larger in-plane displacement at similar time scales. We discuss the origin of the observed highly anisotropic motion of nanoparticles due to their slaved motion with respect to the anisotropic chain orientation and consequent diffusivity anisotropy of matrix chains. We also suggest strategies to utilize these observations to kinetically improve dispersion in otherwise thermodynamically segregated polymer nanocomposite films.
Resumo:
We demonstrate a controllable formation process of wave-like patterns in thermally unstable surface-capped polymer films on a rigid substrate. Self-ordered wave-like structures over a large area can be created by applying a small lateral tension to the film, whereupon it becomes unstable. A clear mode selection process which includes creation, decay and interference between coexisting waves at different annealing conditions has been observed, which makes it possible to restrain the patterns which are formed finally. Our results provide a clear and new evidence of spinodal behaviour in such a film due to thermal instability. Furthermore, we show that the well-controlled patterns generated in such a process can be used to fabricate nanostructures for various applications.
Resumo:
Films of polyetherketone doped with the chromophores Disperse Red 1 (DR1) and Disperse Red 13 (DR13) were prepared by spin-coating method. By the in situ Second-harmonic Generation (SHG) signal intensity measurement, the optimal poling temperatures were obtained. For the investigated polyetherketone polymer doped with DR1 (DR1/PEK-c) and polyetherketone polymer doped with DR13 (DR13/PEK-c) films, the optimal poling temperatures were 150degreesC and 140degreesC, respectively. Under the optimal poling conditions, the high second-order nonlinear optical coefficient chi(33)((2)) = 11.02 pm/V has been obtained for the DR1/PEK-c; and for DR13/PEK-c at the same conditions the coefficient is 17.9 pm/V. The SHG signal intensity DR1/PEK-c could maintain more than 80% of its initial value when the temperature was under 100degreesC, and the SHG signal intensity of the DR13/PEK-c could maintain more than 80% of its initial value when the temperature was under 135degreesC. (C) 2002 Kluwer Academic Publishers.
Resumo:
In order to optimize the loading of 3-(1, 1-dicyanothenyl)-1-phenyl-4, 5-dihydro-1H-pryazole (DCNP) in polyetherketone (PEK-c) guest-host polymer films, ten kinds of DCNP/PEK-c thin films, in which the weight per cent of DCNP changes from 5 to 50, were prepared. Their second-order nonlinear optical coefficients chi(33)((2)) at 1064 nm were measured by Using Maker fringe method after poling under the optimal poling condition. Their optical waveguide transmission losses were measured at 632.8 nm. Optimal weight per cent of the chromophore for the DCNP/PEK-c guest-host polymer system has been determined as about 20 for use in the integrated optical devices.
Resumo:
The polyetherketone (PEK-c) guest-host polymer films doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The films were poled by corona-onset poling at elevated temperature (COPET). The orientational order parameter of the chromophores NAEC in poled polymer film was determined by measuring the absorption spectra of the films before and after being poled. By using the two-level model, the measured dispersion of the refractive index of the polymer film, and the dispersion of the first hyperpolarizability of chromophore NAEC, the dispersion of the macroscopic second-order nonlinear optical (NLO) and linear electrooptic (EO) coefficients was evaluated for the NAEC/PEK-c guest-host polymer film. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The polyetherketone (PEK-c) guest-host polymer thin films doped with 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pryazole (DCNP) were prepared. The polymer films were investigated with in situ second-harmonic generation (SHG) measurement. The corona poling temperature was optimized by the temperature dependence of the in situ SHG signal intensity under the poling electric field applying. The temporal and temperature stability of the second-order properties of the poled polymer film were measured by the in situ SHG signal intensity probing. The second-order NLO coefficient chi ((2))(33) = 32.65 pm/V at lambda = 1064 nm was determined by using the Makel fringe method after poling under the optimal poling condition. The dispersion of the NLO coefficient of the guest-host polymer system was determined by the measured value of chi ((2))(33) at 1064 nm and the two-level model.
Resumo:
The polyetherketone (PEK-c) guest-host system thin films doped with 3-(1,1-dicyanothenyl)-1-phenyl-4,5-dihydro-1H-pryazole (DCNP) were prepared. Their second-order nonlinear optical (NLO) coefficients chi(33)((2)) were measured by using Maker fringe method for the polymer films doped with different weight percents of DCNP. Experimental results indicate that the second-order NLO properties of the poled polymer films could decrease with the chromophore loading increasing when the chromophore loading reaches a fairly high level. In this paper, the relationship between the macroscopic second-order NLO coefficient and the chromophore number density was modified under considering the role of the electrostatic interactions of chromophores in the polymer film. According to the modified relationship, the macroscopic second-order NLO coefficient is no longer in direct proportion with the chromophore number density in the polymer film. The effect of the electrostatic interactions of chromophores on second-order NLO properties was discussed. The attenuation of the macroscopic second-order NLO activity can be demonstrated by the role of the chromophore electrostatic interactions at high loading of chromophore in the polymer systems.
Resumo:
The real-time monitoring of the second-harmonic generation (SHG) was used to optimize the poling condition and to study the nonlinear optical (NLO) properties of the polyetherketone (PEK-c) guest-host polymer films. The high second-order NLO coefficient chi(33)((2)) = 11.02 pm/v measured at 1.064 mu m was achieved when the weight percent of DR1 guest in the polymer system is 20%. The NLO activity of the poled DR1/PEK-c polymer film can maintain more than 80% of its initial value when temperature is under 100 degrees C, and the normalized second-order NLO coefficient can maintain more than 85% after 2400 s at 80 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The mechanism of inhibition of polymer film dewetting is investigated by adding a star comb-like polymer, four-arm P(S-ran-VB-g-PMMA), to PS film and PMMA film on different substrates. It is found that the mechanism of inhibition of polymer film dewetting is kinetic in nature, and is related to the miscibility between the additional compound and the polymer film. On addition to the miscible system [four-arm P(S-ran-VB-g-PMMA) and PMMA], the star comb-like polymers can increase the resistant force of dewetting with hole growth and inhibit the dewetting process of the thin polymer film by enrichment in the rim.
Resumo:
A random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene (PS) thin films was realized by the scattering role of ZnO nanorods. The device was fabricated by spin-coating DCJTB doped PS on ZnO nanorods. The ZnO nanorods were grown on indium-tin-oxide (ITO) glass substrate by hydrothermal synthesis method. It can be seen that the device emits a resonance multimode peak at center wavelength of 630 nm with a mode line-width of less than 0.23 nm and exhibits threshold excitation intensity as low as 0.375 mJ pulse(-1) cm(-2). The agreement of the dependence of threshold pumped intensity on the excitation area with the random laser theory indicates that the lasing emission realized here is random laser. Our results demonstrate that the nanostructured ZnO nanorods are promising candidate as alternative sources of coherent light emission to realize organic lasers.
Resumo:
The process of nonsolvent-induced dewetting of thin polystyrene (PS) films on hydrophilic surfaces at room temperature has been studied by using water as a nonsolvent. It is observed that the process of nonsolvent-induced dewetting is greatly different from other previous dewetting processes. The PS film is found in nonviscous state in our study. A mechanism of nonsolvent-induced dewetting is deduced in an order of penetration, replacement, and coalescent, and it is different from other previous dewetting mechanisms. The results of experiments are analyzed from thermodynamics and dynamics to support the hypothetical mechanism.
Resumo:
Amplified spontaneous emission (ASE) characteristics of a red fluorescent dye, 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), and a green fluorescent dye, (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1] benzopyrano [6,7,8-ij]quinohzin-11-one) (C545T) codoped polystyrene (PS) as the active medium were studied. It was found that the performance of ASE is greatly improved due to the introduction of C545T. By optimizing the concentrations of C545T and DCJTB in PS, an ASE threshold of 0.016 mJ pulse(-1), net gain of 52.71 cm(-1), and loss of 11.7 cm(-1) were obtained. The efficient Forster energy transfer from C545T to DCJTB was used to explain the improvement of the ASE performance in the coguest system.