906 resultados para Polymer Matrix
Resumo:
The mechanical properties of polyvinyl alcohol (PVA) and poly(methyl methacrylate) (PMMA)-matrix composites reinforced by functionalized few-layer graphene (FG) have been evaluated using the nano-indentation technique. A significant increase in both the elastic modulus and hardness is observed with the addition of 0.6 wt% of graphene. The crystallinity of PVA also increases with the addition of FG. This and the good mechanical interaction between the polymer and the FG, which provides better load transfer between the matrix and the fiber, are suggested to be responsible for the observed improvement in mechanical properties of the polymers.
Resumo:
One of the applications of nanomaterials is as reinforcements in composites, wherein small additions of nanomaterials lead to large enhancements in mechanical properties. There have been extensive studies in the literature on composites where a polymer matrix is reinforced by a single nanomaterial such as carbon nanotubes. In this article, we examine the significant synergistic effects observed when 2 different types of nanocarbons are incorporated in a polymer matrix. Thus, binary combinations of nanodiamond, few-layer graphene, and single-walled nanotubes have been used to reinforce polyvinyl alcohol. The mechanical properties of the resulting composites, evaluated by the nanoindentation technique, show extraordinary synergy, improving the stiffness and hardness by as much as 400% compared to those obtained with single nanocarbon reinforcements. These results suggest a way of designing advanced materials with extraordinary mechanical properties by incorporating small amounts of 2 nanomaterials such as graphene plus nanodiamond or nanodiamond plus carbon nanotube.
Resumo:
Poly(vinyl alcohol)-matrix reinforced with nanodiamond (ND) particles, with ND content up to 0.6 wt%, were synthesized. Characterization of the composites by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) reveal uniform distribution of the ND particles with no agglomeration in the matrix. Differential scanning calorimetry reveals that the crystallinity of the polymer increases with increasing ND content, indicating a strong interaction between ND and PVA. Nano-indentation technique was employed to assess the mechanical properties of composites. Results show that even small additions of ND lead to significant enhancement in the hardness and elastic modulus of PVA. Possible micromechanisms responsible for the enhancement of the mechanical properties are discussed.
Resumo:
Wave propagation in graphene sheet embedded in elastic medium (polymer matrix) has been a topic of great interest in nanomechanics of graphene sheets, where the equivalent continuum models are widely used. In this manuscript, we examined this issue by incorporating the nonlocal theory into the classical plate model. The influence of the nonlocal scale effects has been investigated in detail. The results are qualitatively different from those obtained based on the local/classical plate theory and thus, are important for the development of monolayer graphene-based nanodevices. In the present work, the graphene sheet is modeled as an isotropic plate of one-atom thick. The chemical bonds are assumed to be formed between the graphene sheet and the elastic medium. The polymer matrix is described by a Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation of the surrounding elastic medium. When the shear effects are neglected, the model reduces to Winkler foundation model. The normal pressure or Winkler elastic foundation parameter is approximated as a series of closely spaced, mutually independent, vertical linear elastic springs where the foundation modulus is assumed equivalent to stiffness of the springs. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of flexural wave propagation model is also derived and the results of the wave dispersion analysis are shown for both local and nonlocal elasticity calculations. From this analysis we show that the elastic matrix highly affects the flexural wave mode and it rapidly increases the frequency band gap of flexural mode. The flexural wavenumbers obtained from nonlocal elasticity calculations are higher than the local elasticity calculations. The corresponding wave group speeds are smaller in nonlocal calculation as compared to local elasticity calculation. The effect of y-directional wavenumber (eta(q)) on the spectrum and dispersion relations of the graphene embedded in polymer matrix is also observed. We also show that the cut-off frequencies of flexural wave mode depends not only on the y-direction wavenumber but also on nonlocal scaling parameter (e(0)a). The effect of eta(q) and e(0)a on the cut-off frequency variation is also captured for the cases of with and without elastic matrix effect. For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(0)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this article. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We propose an architecture for dramatically enhancing the stress bearing and energy absorption capacities of a polymer based composite. Different weight fractions of iron oxide nano-particles (NPs) are mixed in a poly(dimethylesiloxane) (PDMS) matrix either uniformly or into several vertically aligned cylindrical pillars. These composites are compressed up to a strain of 60% at a strain rate of 0.01 s(-1) following which they are fully unloaded at the same rate. Load bearing and energy absorption capacities of the composite with uniform distribution of NPs increase by similar to 50% upon addition of 5 wt% of NPs; however, these properties monotonically decrease with further addition of NPs so much so that the load bearing capacity of the composite becomes 1/6th of PDMS upon addition of 20 wt% of NPs. On the contrary, stress at a strain of 60% and energy absorption capacity of the composites with pillar configuration monotonically increase with the weight fraction of NPs in the pillars wherein the load bearing capacity becomes 1.5 times of PDMS when the pillars consisted of 20 wt% of NPs. In situ mechanical testing of composites with pillars reveals outward bending of the pillars wherein the pillars and the PDMS in between two pillars, located along a radius, are significantly compressed. Reasoning based on effects of compressive hydrostatic stress and shape of fillers is developed to explain the observed anomalous strengthening of the composite with pillar architecture.
Resumo:
Mechanical properties of single-walled carbon nanohoms (SWNH) and SWNH plus few-layer graphene (EG)-reinforced poly(vinyl alcohol) (PVA) matrix composites have been measured using the nanoindentation technique. The elastic modulus (E) and hardness (H) of PVA were found to improve by similar to 315% and similar to 135%, respectively, upon the addition of just 0.4 wt % SWNH. These properties were found to be comparable to those obtained upon the addition of 0.2 wt % single-walled nanotubes (SWNT) to PVA. Furthermore, upon binary addition of 0.2 wt % EG and 0.4 wt % SWNH to PVA, benefits in the form of similar to 400% and similar to 330% synergy in E and H, respectively, were observed, along with an increased resistance to viscoelastic deformation. The reasons for these improvements are discussed in terms of the dimensionality of nanocarbon, the effectiveness of nanocarbon and polymer matrix interaction, and the influence of nanocarbon on the degree of crystallinity of the polymer. The results from SWNH reinforcement in this study demonstrate the scope for a novel and, in contrast to SWNT composites, a commercially feasible opportunity for strengthening polymer matrices.
Resumo:
We report on rheological properties of a dispersion of multiwalled carbon nanotubes in a viscous polymer matrix. Particular attention is paid to the process of nanotubes mixing and dispersion, which we monitor by the rheological signature of the composite. The response of the composite as a function of the dispersion mixing time and conditions indicates that a critical mixing time t* needs to be exceeded to achieve satisfactory dispersion of aggregates, this time being a function of nanotube concentration and the mixing shear stress. At shorter times of shear mixing t< t*, we find a number of nonequilibrium features characteristic of colloidal glass and jamming of clusters. A thoroughly dispersed nanocomposite, at t> t*, has several universal rheological features; at nanotube concentration above a characteristic value nc ∼2-3 wt. % the effective elastic gel network is formed, while the low-concentration composite remains a viscous liquid. We use this rheological approach to determine the effects of aging and reaggregation. © 2006 The American Physical Society.
Resumo:
Carbon nanotubes have unprecedented mechanical properties as defect-free nanoscale building blocks, but their potential has not been fully realized in composite materials due to weakness at the interfaces. Here we demonstrate that through load-transfer-favored three-dimensional architecture and molecular level couplings with polymer chains, true potential of CNTs can be realized in composites as Initially envisioned. Composite fibers with reticulate nanotube architectures show order of magnitude improvement in strength compared to randomly dispersed short CNT reinforced composites reported before. The molecular level couplings between nanotubes and polymer chains results in drastic differences in the properties of thermoset and thermoplastic composite fibers, which indicate that conventional macroscopic composite theory falls to explain the overall hybrid behavior at nanoscale.
Resumo:
To simulate the deformation and the fracture of gradual multi-fiber-reinforced matrix composites, a numerical simulation method for the mesoscopic mechanical behaviors was developed on the basis of the finite element and the Monte Carlo methods. The results indicate that the strength of a composite increases if the variability of statistical fiber strengths is decreased.
Resumo:
The stress transfer from broken fibers to unbroken fibers in fiber-reinforced thermosetting polymer-matrix composites and thermoplastic polymer-matrix composites was studied using a detailed finite element model. In order to check the validity of this approach, an epoxy-matrix monolayer composite was used as thermosetting polymer-matrix composite and a polypropylene (PP)-matrix monolayer composite was used as thermoplastic polymer-matrix composite, respectively. It is found that the stress concentrations near the broken fiber element cause damage to the neighboring epoxy matrix prior to the breakage of other fibers, whereas in the case of PP-matrix composites the fibers nearest to the broken fiber break prior to the PP matrix damage, because the PP matrix around the broken fiber element yields. In order to simulate composite damage evolution, a Monte Carlo technique based on a finite element method has been developed in the paper. The finite element code coupled with statistical model of fiber strength specifically written for this problem was used to determine the stress redistribution. Five hundred samples of numerical simulation were carried out to obtain statistical deformation and failure process of composites with fixed fiber volume fraction.
Resumo:
In the present review, the authors do not try to provide a comprehensive review of researches on polymer/clay nanocomposites (PCNs), but some examples to demonstrate different exfoliation processes of the clay in various polymer matrixes and the dispersed state of clay. Interaction between polymers and layered silicates plays an important role in adjusting the exfoliation process of layered silicates and the microstructure of polymer nanocomposites. Properties of polymer/layered silicate nanocomposites mainly depend on the dispersed state of layered silicates. The authors will also address the outline of the present research in the direction of PCNs including the discussion of technical problems and their possible solutions.