400 resultados para Polyhydroxyalkanoates (PHA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHA) production using mixed microbial cultures (MMC) requires a multi-stage process involving the microbial selection of PHA-storing microorganisms, typically operated in sequencing batch reactors (SBR), and an accumulation reactor. Since low-cost renewable feedstocks used as process feedstock are often nitrogen-deficient, nutrient supply in the selection stage is required to allow for microbial growth. In this context, the possibility to uncouple nitrogen supply from carbon feeding within the SBR cycle has been investigated in this study. Moreover, three different COD:N ratios (100:3.79, 100:3.03 and 100:2.43) were tested in three different runs which also allowed the study of COD:N ratio on the SBR performance. For each run, a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5 gCOD L-1 d-1 was used as carbon feedstock, whereas ammonium sulfate was the nitrogen source in a lab-scale sequence batch reactor (SBR) with 1 L of working volume. Besides, a sludge retention time (SRT) of 1 d was used as well as a 6 h cycle length. The uncoupled feeding strategy significantly enhanced the selective pressure towards PHA-storing microorganisms, resulting in a two-fold increase in the PHA production (up to about 1.3 gCOD L-1). A high storage response was observed for the two runs with the COD:N ratios (gCOD:gN) of 100:3.79 and 100:3.03, whereas the lowest investigated nitrogen load resulted in very poor performance in terms of polymer production. In fact, strong nitrogen limitation caused fungi to grow and a very poor storage ability by microorganisms that thrived in those conditions. The COD:N ratio also affected the polymer composition, indeed the produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) showed a variable HV content (1-20 %, w/w) among the three runs, lessening as the COD:N increased. This clearly suggests the possibility to use the COD:N ratio as a tool for tuning polymer properties regardless the composition of the feedstock.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Different oil-containing substrates, namely, used cooking oil (UCO), fatty acids-byproduct from biodiesel production (FAB) and olive oil deodorizer distillate (OODD) were tested as inexpensive carbon sources for the production of polyhydroxyalkanoates (PHA) using twelve bacterial strains, in batch experiments. The OODD and FAB were exploited for the first time as alternative substrates for PHA production. Among the tested bacterial strains, Cupriavidus necator and Pseudomonas resinovorans exhibited the most promising results, producing poly-3-hydroxybutyrate, P(3HB), form UCO and OODD and mcl-PHA mainly composed of 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD) monomers from OODD, respectively. Afterwards, these bacterial strains were cultivated in bioreactor. C. necator were cultivated in bioreactor using UCO as carbon source. Different feeding strategies were tested for the bioreactor cultivation of C. necator, namely, batch, exponential feeding and DO-stat mode. The highest overall PHA productivity (12.6±0.78 g L-1 day-1) was obtained using DO-stat mode. Apparently, the different feeding regimes had no impact on polymer thermal properties. However, differences in polymer‟s molecular mass distribution were observed. C. necator was also tested in batch and fed-batch modes using a different type of oil-containing substrate, extracted from spent coffee grounds (SCG) by super critical carbon dioxide (sc-CO2). Under fed-batch mode (DO-stat), the overall PHA productivity were 4.7 g L-1 day-1 with a storage yield of 0.77 g g-1. Results showed that SCG can be a bioresource for production of PHA with interesting properties. Furthermore, P. resinovorans was cultivated using OODD as substrate in bioreactor under fed-batch mode (pulse feeding regime). The polymer was highly amorphous, as shown by its low crystallinity of 6±0.2%, with low melting and glass transition temperatures of 36±1.2 and -16±0.8 ºC, respectively. Due to its sticky behavior at room temperature, adhesiveness and mechanical properties were also studied. Its shear bond strength for wood (67±9.4 kPa) and glass (65±7.3 kPa) suggests it may be used for the development of biobased glues. Bioreactor operation and monitoring with oil-containing substrates is very challenging, since this substrate is water immiscible. Thus, near-infrared spectroscopy (NIR) was implemented for online monitoring of the C. necator cultivation with UCO, using a transflectance probe. Partial least squares (PLS) regression was applied to relate NIR spectra with biomass, UCO and PHA concentrations in the broth. The NIR predictions were compared with values obtained by offline reference methods. Prediction errors to these parameters were 1.18 g L-1, 2.37 g L-1 and 1.58 g L-1 for biomass, UCO and PHA, respectively, which indicates the suitability of the NIR spectroscopy method for online monitoring and as a method to assist bioreactor control. UCO and OODD are low cost substrates with potential to be used in PHA batch and fed-batch production. The use of NIR in this bioprocess also opened an opportunity for optimization and control of PHA production process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Due to the prospective partial replacement of fossil fuels by biodiesel, its production has continuously grown in the last decade. The increase in global biodiesel production demands the development of sustainable applications of its main by-product, crude glycerol. In this thesis the feasibility of producing polyhydroxyalkanoates (PHA) by a mixed microbial community using crude glycerol as feedstock was investigated. Several incubation conditions were studied in order to maximize PHA production. The microbial population selected under aerobic dynamic feeding conditions had the ability to consume both major carbon fractions present in the crude, glycerol and methanol. Two biopolymers were stored, poly-3-hydroxybutyrate (PHB) and glucose biopolymer (GB), apparently using glycerol as the only carbon source for their production. The microbial enrichment obtained was able to accumulate up to 47% PHB of cell dry weight with a productivity of 0.24 g HA/L d. The overall PHA yield on total substrate consumed (0.32 g COD HB/g COD crude glycerol) was in the middle range of those reported in literature (0.08–0.58 g COD PHA/g COD real waste). The increase of temperature from 23ºC to 30ºC favored the culture fraction that accumulates glucose biopolymer with a maximum accumulation value of 25% of cell dry weight, which is an interesting value but not the main goal of this thesis. The fact that crude glycerol can be used to produce PHA without any pre-treatment step, makes the overall production process economically more competitive, reducing polymer final cost. This was the first study that demonstrates the valorization of the glycerol fraction present in the crude glycerol into PHA using an aerobic mixed microbial consortium.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are natural biologically synthesized polymers that have been the subject of much interest in the last decades due to their biodegradability. Thus far, its microbial production is associated with high operational costs, which increases PHA prices and limits its marketability. To address this situation, this thesis’ work proposes the utilization of photosynthetic mixed cultures (PMC) as a new PHA production system that may lead to a reduction in operational costs. In fact, the operational strategies developed in this work led to the selection of PHA accumulating PMCs that, unlike the traditional mixed microbial cultures, do not require aeration, thus permitting savings in this significant operational cost. In particular, the first PHA accumulating PMC tested in this work was selected under non-aerated illuminated conditions in a feast and famine regime, being obtained a consortium of bacteria and algae, where photosynthetic bacteria accumulated PHA during the feast phase and consumed it for growth during the famine phase, using the oxygen produced by algae. In this symbiotic system, a maximum PHA content of 20% cell dry weight (cdw) was reached, proving for the first time, the capacity of a PMC to accumulate PHA. During adaptation to dark/light alternating conditions, the culture decreased its algae content but maintained its viability, achieving a PHA content of 30% cdw. Also, the PMC was found to be able to utilize different volatile fatty acids for PHA production, accumulating up to 20% cdw of a PHA co-polymer composed of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (HV) monomers. Finally, a new selective approach for the enrichment of PMCs in PHA accumulating bacteria was tested. Instead of imposing a feast and famine regime, a permanent feast regime was used, thus selecting a PMC that was capable of simultaneously growing and accumulating PHA, being attained a maximum PHA content of 60% cdw, the highest value reported for a PMC thus far. The results presented in this thesis prospect the utilization of cheap, VFA-rich fermented wastes as substrates for PHA production, which combined with this new photosynthetic technology opens up the possibility for direct sunlight illumination, leading to a more cost-effective and environmentally sustainable PHA production process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thermal degradation upon melting is one of the major drawbacks reported for polyhydroxyalkanoates (PHA). However, the role of residues originating from the fermentation and the extraction steps on the thermal stability of this class of biopolymers still needs to be clarified. In the particular case of PHA produced from mixed microbial cultures (MMC), this topic is even less documented in the literature. Here, two polyhydroxy(butyrate-co-valerate) (PHBV) produced from MMC enriched in PHA accumulating organisms and fed with cheese whey were studied. A micro extrusion line is used to produce filaments and assess the processability and the degradation of processed PHBV. The prototype micro extrusion line allows for studying grams of materials. The two PHBV contain 18 mol% HV. PHBV was recovered with 11 wt% residues, and further submitted to a purification procedure resulting in a second biopolyester containing less than 2 wt% impurities. The thermorheological characterization of the two PHBV is first presented, together with their semicrystalline properties. Then the processing windows of the two biopolyesters are presented. Finally, the properties of extruded filaments are reported and the thermomechanical degradation of PHBV is extensively studied. The structure was assessed by wide angle X-ray diffraction, mechanical and rheological properties are reported, thermal properties are studied with differential scanning calorimetry and thermogravimetric analysis, whereas Fourier Transform Infrared spectroscopy was used to assess the impact of the extrusion on PHBV chemical structure. All results obtained with the two PHBV are compared to assess the effects of residues on both PHBV processability and degradation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microbial mats are complex but stable, multi-layered and multi-functional biofilms, which are the most frequent bacterial formations in nature. The functional strategies and physiological versatility of the bacterial populations growing in microbial mats allow bacteria to resist changing conditions within their environment. One of these strategies is the accumulation of carbon- and energy-rich polymers that permit the recovery of metabolic activities when favorable conditions are restored. In the present study, we systematically screened microbial mats for bacteria able to accumulate large amounts of the ester carbon polymers polyhydroxyalkanoates (PHA). Several of these strains were isolated from Ebro Delta microbial mats and their ability to accumulate PHA up to 40-60 % of their dry weight was confirmed. According to two identification approaches (16S rRNA and ropD genes), these strains were identified as Halomonas alkaliphila (MAT-7, -13, -16), H. neptunia (MAT-17), and H. venusta (MAT-28). To determine the mode of growth yielding maximum PHA accumulation, these three different species were cultured in an artificial biofilm in which the cells were immobilized on alginate beads. PHA accumulation by cells that had detached from the biofilm was compared with that of their planktonic counterparts. Experiments in different culture media showed that PHA accumulation, measured as the relative fluorescence intensity after 48 h of incubation at 30 °C, was higher in immobilized than in planktonic cells, with the exception of cells growing in 5 % NaCl, in which PHA accumulation was drastically lower in both. Therefore, for obtaining high PHA concentrations, the use of immobilized cells may be a good alternative to the PHA accumulation by bacteria growing in the classical, planktonic mode. From the ecological point of view, increased PHA accumulation in detached cells from biofilms would be a natural strategy to improve bacterial dispersion capacity and, consequently, to increase survival in stressed environments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microbial mats are complex but stable, multi-layered and multi-functional biofilms, which are the most frequent bacterial formations in nature. The functional strategies and physiological versatility of the bacterial populations growing in microbial mats allow bacteria to resist changing conditions within their environment. One of these strategies is the accumulation of carbon- and energy-rich polymers that permit the recovery of metabolic activities when favorable conditions are restored. In the present study, we systematically screened microbial mats for bacteria able to accumulate large amounts of the ester carbon polymers polyhydroxyalkanoates (PHA). Several of these strains were isolated from Ebro Delta microbial mats and their ability to accumulate PHA up to 40-60 % of their dry weight was confirmed. According to two identification approaches (16S rRNA and ropD genes), these strains were identified as Halomonas alkaliphila (MAT-7, -13, -16), H. neptunia (MAT-17), and H. venusta (MAT-28). To determine the mode of growth yielding maximum PHA accumulation, these three different species were cultured in an artificial biofilm in which the cells were immobilized on alginate beads. PHA accumulation by cells that had detached from the biofilm was compared with that of their planktonic counterparts. Experiments in different culture media showed that PHA accumulation, measured as the relative fluorescence intensity after 48 h of incubation at 30 °C, was higher in immobilized than in planktonic cells, with the exception of cells growing in 5 % NaCl, in which PHA accumulation was drastically lower in both. Therefore, for obtaining high PHA concentrations, the use of immobilized cells may be a good alternative to the PHA accumulation by bacteria growing in the classical, planktonic mode. From the ecological point of view, increased PHA accumulation in detached cells from biofilms would be a natural strategy to improve bacterial dispersion capacity and, consequently, to increase survival in stressed environments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microbial mats are complex but stable, multi-layered and multi-functional biofilms, which are the most frequent bacterial formations in nature. The functional strategies and physiological versatility of the bacterial populations growing in microbial mats allow bacteria to resist changing conditions within their environment. One of these strategies is the accumulation of carbon- and energy-rich polymers that permit the recovery of metabolic activities when favorable conditions are restored. In the present study, we systematically screened microbial mats for bacteria able to accumulate large amounts of the ester carbon polymers polyhydroxyalkanoates (PHA). Several of these strains were isolated from Ebro Delta microbial mats and their ability to accumulate PHA up to 40-60 % of their dry weight was confirmed. According to two identification approaches (16S rRNA and ropD genes), these strains were identified as Halomonas alkaliphila (MAT-7, -13, -16), H. neptunia (MAT-17), and H. venusta (MAT-28). To determine the mode of growth yielding maximum PHA accumulation, these three different species were cultured in an artificial biofilm in which the cells were immobilized on alginate beads. PHA accumulation by cells that had detached from the biofilm was compared with that of their planktonic counterparts. Experiments in different culture media showed that PHA accumulation, measured as the relative fluorescence intensity after 48 h of incubation at 30 °C, was higher in immobilized than in planktonic cells, with the exception of cells growing in 5 % NaCl, in which PHA accumulation was drastically lower in both. Therefore, for obtaining high PHA concentrations, the use of immobilized cells may be a good alternative to the PHA accumulation by bacteria growing in the classical, planktonic mode. From the ecological point of view, increased PHA accumulation in detached cells from biofilms would be a natural strategy to improve bacterial dispersion capacity and, consequently, to increase survival in stressed environments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of environmentally friendly products increased the interest in renewable resources as alternatives to petrochemical products. Polyhydroxyalkanoates (PHAs) are examples of such promising products, as they are biodegradable polymers with numerous potential applications. PHA production approach consists of using an open mixed microbial culture (MMC) and inexpensive feedstocks (waste or industry byproducts feedstock). The PHA process generally comprises three stages: (1) acidogenic fermentation (AF) stage (conversion of organic carbon into fermentation products); (2) culture selection stage (enrichment in PHA-storing organisms by applying Feast and Famine regime); and (3) PHA production stage (PHA accumulation up to the culture’s maximum capacity). AF of protein-rich residues results in ammonia-rich fermented streams, which can be presented as a challenge for the PHA production stage. The presence of ammonia during this stage may induce organisms to grow instead of producing PHAs. For this reason, the assessment of the effect of a high content of ammonia on PHA production it is the utmost importance. The main goal of the current project is to select a MMC enriched in PHA-accumulating organisms in conditions of high ammonia content and to evaluate the effects of ammonia presence during PHA accumulation. The culture was selected applying the Feast & Famine strategy, and fed, firstly, using a synthetic mixture of VFAs and later using a fermented stream obtained from the fermentation of protein-rich raw materials. The selected culture could accumulate up to 24% PHA per VSS with the synthetic mixture of VFAs and up to 29% for the real fermented stream. The PHA accumulation resulted in different production in the presence and absence of ammonia. Regarding to the synthetic feed, 59%wt. PHA (VSS basis) in the absence of ammonia, and 55%wt. (VSS basis) in the presence, were obtained. For the real feed, the PHA content was about 40%wt. (VSS basis) in both reactors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plastic is an essential asset for the modern lifestyle, given its superiority as a material from the points of view of cost, processability and functional properties. However, plastic-related environmental pollution has become nowadays a very significant problem that can no longer be overlooked. For this reason, in recent decades, the research for new materials that could replace fossil fuel-based plastics has been focused on biopolymers with similar physicochemical properties to fossil fuel-based plastics, such as Polyhydroxyalkanoates (PHA). PHAs are a family of biodegradable polyesters synthesized by many microorganisms as carbon and energy reserves. PHA appears as a good candidate to substitute conventional petroleum-based plastics since it has similar properties, but with the advantage of being biobased and biodegradable, and has a wide range of applications (e.g., packaging). However, the PHA production cost is almost four times higher (€5/kg) than conventional plastic manufacturing. The PHA production by mixed microbial cultures (MMC) allows to reduce production costs as it does not require aseptic conditions and it enables the use of inexpensive by-products or waste streams as these cultures are more amenable to deal with complex feedstocks. Saline wastewaters (WWs), generated by several industries such as seafood, leather and dairy, are often rich in organic compounds and, due to a strong salt inhibition, the biological treatments are inefficient, and their disposal is expensive. These saline WWs are a potential feedstock for PHA production, as they are an inexpensive raw material. Moreover, saline WWs could allow the utilization of seawater in the process as dilution and cleaning agent, further decreasing the operational costs and the environmental burden of the process. The main goal of the current project is to assess and optimize the PHA production from a mixture of food waste and brine wastewater from the fishery industry by MMC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Química e Biológica.