984 resultados para Polyharmonic distortion modeling. X-parameters. Test-Bench. Planar structures. PHD
Resumo:
Due to major progress of communication system in the last decades, need for more precise characterization of used components. The S-parameters modeling has been used to characterization, simulation and test of communication system. However, limitation of S-parameters to model nonlinear system has created new modeling systems that include the nonlinear characteristics. The polyharmonic distortion modeling is a characterizationg technique for nonlinear systems that has been growing up due to praticity and similarity with S-parameters. This work presents analysis the polyharmonic distortion modeling, the test bench development for simulation of planar structure and planar structure characterization with X-parameters
Resumo:
Resumen El diseño clásico de circuitos de microondas se basa fundamentalmente en el uso de los parámetros s, debido a su capacidad para caracterizar de forma exitosa el comportamiento de cualquier circuito lineal. La relación existente entre los parámetros s con los sistemas de medida actuales y con las herramientas de simulación lineal han facilitado su éxito y su uso extensivo tanto en el diseño como en la caracterización de circuitos y subsistemas de microondas. Sin embargo, a pesar de la gran aceptación de los parámetros s en la comunidad de microondas, el principal inconveniente de esta formulación reside en su limitación para predecir el comportamiento de sistemas no lineales reales. En la actualidad, uno de los principales retos de los diseñadores de microondas es el desarrollo de un contexto análogo que permita integrar tanto el modelado no lineal, como los sistemas de medidas de gran señal y los entornos de simulación no lineal, con el objetivo de extender las capacidades de los parámetros s a regímenes de operación en gran señal y por tanto, obtener una infraestructura que permita tanto la caracterización como el diseño de circuitos no lineales de forma fiable y eficiente. De acuerdo a esta filosofía, en los últimos años se han desarrollado diferentes propuestas como los parámetros X, de Agilent Technologies, o el modelo de Cardiff que tratan de proporcionar esta plataforma común en el ámbito de gran señal. Dentro de este contexto, uno de los objetivos de la presente Tesis es el análisis de la viabilidad del uso de los parámetros X en el diseño y simulación de osciladores para transceptores de microondas. Otro aspecto relevante en el análisis y diseño de circuitos lineales de microondas es la disposición de métodos analíticos sencillos, basados en los parámetros s del transistor, que permitan la obtención directa y rápida de las impedancias de carga y fuente necesarias para cumplir las especificaciones de diseño requeridas en cuanto a ganancia, potencia de salida, eficiencia o adaptación de entrada y salida, así como la determinación analítica de parámetros de diseño clave como el factor de estabilidad o los contornos de ganancia de potencia. Por lo tanto, el desarrollo de una formulación de diseño analítico, basada en los parámetros X y similar a la existente en pequeña señal, permitiría su uso en aplicaciones no lineales y supone un nuevo reto que se va a afrontar en este trabajo. Por tanto, el principal objetivo de la presente Tesis consistiría en la elaboración de una metodología analítica basada en el uso de los parámetros X para el diseño de circuitos no lineales que jugaría un papel similar al que juegan los parámetros s en el diseño de circuitos lineales de microondas. Dichos métodos de diseño analíticos permitirían una mejora significativa en los actuales procedimientos de diseño disponibles en gran señal, así como una reducción considerable en el tiempo de diseño, lo que permitiría la obtención de técnicas mucho más eficientes. Abstract In linear world, classical microwave circuit design relies on the s-parameters due to its capability to successfully characterize the behavior of any linear circuit. Thus the direct use of s-parameters in measurement systems and in linear simulation analysis tools, has facilitated its extensive use and success in the design and characterization of microwave circuits and subsystems. Nevertheless, despite the great success of s-parameters in the microwave community, the main drawback of this formulation is its limitation in the behavior prediction of real non-linear systems. Nowadays, the challenge of microwave designers is the development of an analogue framework that allows to integrate non-linear modeling, large-signal measurement hardware and non-linear simulation environment in order to extend s-parameters capabilities to non-linear regimen and thus, provide the infrastructure for non-linear design and test in a reliable and efficient way. Recently, different attempts with the aim to provide this common platform have been introduced, as the Cardiff approach and the Agilent X-parameters. Hence, this Thesis aims to demonstrate the X-parameter capability to provide this non-linear design and test framework in CAD-based oscillator context. Furthermore, the classical analysis and design of linear microwave transistorbased circuits is based on the development of simple analytical approaches, involving the transistor s-parameters, that are able to quickly provide an analytical solution for the input/output transistor loading conditions as well as analytically determine fundamental parameters as the stability factor, the power gain contours or the input/ output match. Hence, the development of similar analytical design tools that are able to extend s-parameters capabilities in small-signal design to non-linear ap- v plications means a new challenge that is going to be faced in the present work. Therefore, the development of an analytical design framework, based on loadindependent X-parameters, constitutes the core of this Thesis. These analytical nonlinear design approaches would enable to significantly improve current large-signal design processes as well as dramatically decrease the required design time and thus, obtain more efficient approaches.
Resumo:
This communications describes an electromagnetic model of a radial line planar antenna consisting of a radial guide with one central probe and many peripheral probes arranged in concentric circles feeding an array of antenna elements such as patches or wire curls. The model takes into account interactions between the coupling probes while assuming isolation of radiating elements. Based on this model, computer programs are developed to determine equivalent circuit parameters of the feed network and the radiation pattern of the radial line planar antenna. Comparisons are made between the present model and the two-probe model developed earlier by other researchers.
Resumo:
Ventricular assist devices (VADs) are used in treatment for terminal heart failure or as a bridge to transplantation. We created biVAD using the artificial muscles (AMs) that supports both ventricles at the same time. We developed the test bench (TB) as the in vitro evaluating system to enable the measurement of performance. The biVAD exerts different pressure between left and right ventricle like the heart physiologically does. The heart model based on child's heart was constructed in silicone. This model was fitted with the biVAD. Two pipettes containing water with an ultrasonic sensor placed on top of each and attached to ventricles reproduced the preload and the after load of each ventricle by the real-time measurement of the fluid height variation proportionally to the exerted pressure. The LabVIEW software extrapolated the displaced volume and the pressure generated by each side of our biVAD. The development of a standardized protocol permitted the validation of the TB for in vitro evaluation, measurement of the performances of the AM biVAD herein, and reproducibility of data.
Resumo:
A frame-level distortion model based on perceptual features of the human visual system is proposed to improve the performance of unequal error protection strategies and provide better quality of experience to users in Side-by-Side 3D video delivery systems.
Resumo:
New tin(IV) complexes of empirical formula, Sn(NNS)I-3 (NNS = anionic forms of the 2-quinolinecarboxaldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. In the solid state, the Schiff bases exist as the thione tautomer but in solution and in the presence of tin(IV) iodide they convert to the thiol tautomer and coordinate to the tin atom in their deprotonated thiolate forms. The structures of the free ligand, Hqaldsbz and its triiodotin(IV) complex, [Sn(qaldsbz)I-3] have been determined by X-ray diffraction. The complex, [Sn(qaldsbz)I-3] has a distorted octahedral structure with the Schiff base coordinated to the tin atom as a uninegatively charged tridentate chelating agent via the quinoline nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The three iodo ligands are coordinated meridionally to the tin atom. The distortion from an ideal octahedral geometry of [Sn(qaldsbz)I-3] is attributed to the restricted bite size of the tridentate Schiff base ligand. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Reaction of Li(CPhCMe2) with SnCl4 or CrCl3·3thf (thf = tetrahydrofuran) affords the isoleptic compounds Sn(CPhCMe2)4 or [Cr(CPhCMe2)4] respectively. The mode of formation and chemical properties are reported for the chromium species, and the structures of the new compounds, both of which have been determined by single-crystal X-ray analysis, are described.
Resumo:
The aim of this work is to characterize and use the characteristic parameters of the planar structures constructed with fin lines looking for their applications in devices, using PBG Photonic Band Gap photonic materials as substrate, operating in the millimeter and optic wave bands.The PBG theory will be applied for the relative permittivity attainment for the PBG photonic substrate s and p polarizations. The parameters considered in the structures characterization are the complex propagation constant and the characteristic impedance of unilateral and bilateral fin lines that were obtained by the use of the TTL Transverse Transmission Line Method, together with the Method of the Moments. The final part of this work comprises studies related to the behavior of the asymmetric unilateral fin line coupler with photonic substrate. This research opens perspectives for new works in this modern area. Numerical results are shown by means of bi-dimensional and three-dimensional graphics. Conclusions and suggestions for future works are also presented
Resumo:
The compounds [Fe(ch)(CO)(2)PP3] (1) (ch = chalcone) and [Fe(sba)(CO)(2)PPh3] (2) (sba = sorbic acid) were prepared by irradiating the tetracarbonyltriphenylphosphineiron(0) complex in benzene in the presence of ch or sba. The compounds were characterized by infrared and P-31 NMR spectroscopies. Their electrochemical behavior was investigated by cyclic voltammetry and the results suggest that their oxidations occur by more than one electrochemical step, producing free ch and sba, free PPh3 and solvated Fe(III). It was observed that sba ligand contributes more effectively to the stabilization of metal center in these complexes, the X-ray crystal and molecular structures of 1 and 2 were determined; it was shown that the Fe atom adopts a distorted octahedral coordinated geometry in which three of the sites are occupied by the ch or sba ligand. The [Fe(ch)(CO)(2)PPh3] complex is a monomer and the unit cell of complex 2 contains exist two identical and crystallographically independent molecules of [Fe(sba)(CO)(2)PPh3] which are linked by short hydrogen bonds O-H . . .O (C) 2001 Published by Elsevier B.V. Ltd.
Resumo:
Reaction of LaX3(THF)(n) (X = Cl, 1) with two equiv. of K(Tp(Me2)) gave good yields of the bis-Tp complexes [La(Tp(Me2))(2)X] (X = Cl (1); I (3)). However, the formation of 1 and 3 is always accompanied by significant amounts of La(Tp(Me2))(2)(kappa(2)-pz(Me2)) ([pz(Me2)](-) = 3,5-dimethyl-pyrazolato) (2). The pyrazolato complex 2, which presumably arises from decomposition of the [Tp(Me2)](-) moiety during salt metathesis, was independently prepared in good yield from 1 and in situ generated [pz(Me2)](-). The solid-state structures of 1 and 2 were determined by single-crystal X-ray diffraction studies. Subsequent reactions of halogeno-Tp(Me2) complexes 1 and 3 with various alkali metal salts MR (M = Li, R = CH2SiMe3, Ph, N(SiMe3)(2); M = K, R = OAr) gave M(Tp(Me2)) as the major product. Alternatively, the mono-Tp bis(aryloxide) derivatives [Ln(Tp(Me2))(OC6H2-2,6-'Bu-4-Me)(2)] (Ln = La (4); Nd (5)) were obtained in high yields by salt metathesis of [Ln(OC6H2-2,6-'Bu-4-Me)(3)] with one equiv. of K(Tp(Me2)). (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
"Contract AF33(616)-6079 Project No. 9-(13-6278) Task 40572. Sponsored by: Wright Air Development Center"
Resumo:
In this thesis, the focus is on utilizing metasurfaces to improve radiation characteristics of planar structures. The study encompasses various aspects of metasurface applications, including enhancing antenna radiation characteristics and manipulating electromagnetic (EM) waves, such as polarization conversion and anomalous reflection. The thesis introduces the design of a single-port antenna with dual-mode operation, integrating metasurfaces. This antenna serves as the front-end for a next-generation tag, functioning as a position sensor with identification and energy harvesting capabilities. It operates in the lower European Ultra-Wideband (UWB) frequency range for communication/localization and the UHF band for wireless energy reception. The design aims for a low-profile stack-up that remains unaffected by background materials. Researchers worldwide are drawn to metasurfaces due to their EM wave manipulation capabilities. The thesis also demonstrates how a High-Impedance Surface (HIS) can enhance the antenna's versatility through metasurface application, including conformal design using 3D-printing technology, ensuring adaptability for various deformation and tracking/powering scenarios. Additionally, the thesis explores two distinct metasurface applications. One involves designing an angularly stable super-wideband Circular Polarization Converter (CPC) operating from 11 to 35GHz with an impressive relative impedance bandwidth of 104.3%. The CPC shows a stable response even at oblique incidences up to 40 degrees, with a Peak Cross-Polarization Ratio (PCR) exceeding 62% across the entire band. The second application focuses on an Intelligent Reflective Surface (IRS) capable of redirecting incoming waves in unconventional directions. Tunability is achieved through an artificially developed ferroelectric material (HfZrO) and distributed capacitive elements (IDC) to fine-tune impedance and phase responses at the meta-atom level. The IRS demonstrates anomalous reflection for normal incident waves. These innovative applications of metasurfaces offer promising advancements in antenna design, EM wave manipulation, and versatile wireless communication systems.
Resumo:
It is analyzed through the concepts of tribology and mechanical contact and damage the suggestion of implementing a backup system for traction and passage of Pipeline Inspection Gauge (Pig) from the inside of pipelines. In order to verify the integrity of the pipelines, it is suggested the possibility of displacement of such equipment by pulling wires with steel wires. The physical and mechanical characteristics of this method were verified by accelerated tests in the laboratory in a tribological pair, wire versus a curve 90. It also considered the main mechanisms of wear of a sliding system with and without lubricant, in the absence and presence of contaminants. To try this, It was constructed a test bench able to reproduce a slip system, work on mode back-and-forth ("reciprocation"). It was used two kinds of wires, a galvanized steel and other stainless steel and the results achieved using the two kinds of steel cables were compared. For result comparative means, it was used steel cables with and without coating of Poly Vinyl Chloride (PVC). The wires and the curves of the products were characterized using metallographic analysis, microhardness Vickers tests, X-ray diffraction (XRD), X-Ray Refraction (XRF) and tensile tests. After the experiments were analyzed some parameters that have been measurable, it demonstrates to the impracticality of this proposed method, since the friction force and the concept of alternating request at the contact between the strands of wire and the inner curves that are part ducts caused severe wear. These types of wear are likely to cause possible failures in future products and cause fluid leaks
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)