20 resultados para Polydnavirus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polydnaviruses (genera Ichnovirus and Bracovirus) have a segmented genome of circular double-stranded DNA molecules, replicate in the ovary of parasitic wasps and are essential for successful parasitism of the host. Here we show the first detailed analysis of various segments of a bracovirus, the Chelonus inanitus virus (CiV). Four segments were sequenced and two of them, CiV12 and CiV14, were found to be closely related while CiV14.5 and CiV16.8 were unrelated. CiV12, CiV14.5 and CiV16.8 are unique while CiV14 occurs also nested in another larger segment. All four segments are predicted to contain genes and predictions could be substantiated in most cases. Comparison with databases revealed no significant similarities at either the nucleotide or amino acid level. Inverted repeats with identities between 77% and 92% and lengths between 26 bp and 100 bp were found on all segments outside of predicted genes. Hybridization experiments indicate that CiV12 and CiV14 are both flanked by other virus segments, suggesting that proviral CiV segments are clustered in the genome of the wasp. The integration/excision site of CiV14 was analysed and compared to that of CiV12. On both termini of proviral CiV12 and CiV14 as well as in the excised circular molecule and the rejoined DNA a very similar repeat of 14 bp was found. A model to illustrate where the terminal repeats might recombine to yield the circular molecule is presented. Excision of CiV12 and CiV14 is restricted to the female and sets in at a very specific time-point in pupal-adult development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parasitoid Chelonus inanitus (Braconidae, Hymenoptera) oviposits into eggs of Spodoptera littoralis (Noctuidae, Lepidoptera) and, along with the egg, also injects polydnaviruses and venom, which are prerequisites for successful parasitoid development. The parasitoid larva develops within the embryonic and larval stages of the host, which enters metamorphosis precociously and arrests development in the prepupal stage. Polydnaviruses are responsible for the developmental arrest and interfere with the host's endocrine system in the last larval instar. Polydnaviruses have a segmented genome and are transmitted as a provirus integrated in the wasp's genome. Virions are only formed in female wasps and no virus replication is seen in the parasitized host. Here it is shown that very small amounts of viral transcripts were found in parasitized eggs and early larval instars of S. littoralis. Later on, transcript quantities increased and were highest in the late last larval instar for two of the three viral segments tested and in the penultimate to early last larval instar for the third segment. These are the first data on the occurrence of viral transcripts in the host of an egg-larval parasitoid and they are different from data reported for hosts of larval parasitoids, where transcript levels are already high shortly after parasitization. The analysis of three open reading frames by RT-PCR revealed viral transcripts in parasitized S. littoralis and in female pupae of C. inanitus, indicating the absence of host specificity. For one open reading frame, transcripts were also seen in male pupae, suggesting transcription from integrated viral DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many endoparasitic wasps inject, along with the egg, polydnavirus into their insect hosts, the virus being a prerequisite for successful parasitoid development. The genome of polydnaviruses consists of multiple circular dsDNA molecules of variable size. We show for a 12 kbp segment of the braconid Chelonus inanitus (CiV12) that it is integrated into the wasp genome. This is the first direct demonstration of integration for a bracovirus. PCR data indicated that the integrated form of CiV12 was present in all male and female stages investigated while the excised circular virus DNA only appeared in females after a specific stage in pupal-adult development. The data also indicated that after excision of virus DNA the genomic DNA was rejoined. This has not yet been reported for any polydnavirus. Sequence analyses in the junction regions revealed the presence of an imperfect consensus sequence of 15 nucleotides in CiV12, in each terminus of the integrated virus DNA and in the rejoined genomic DNA. Within these repeats two sequence types (ATA, TAC) were observed in the various virus clones and in the clones encompassing the rejoined genomic DNA; they corresponded to the sequence type in the right and left junction, respectively. To explain this, we propose a model of virus DNA replication in which the genomic DNA is folded to juxtapose the direct repeat of the left with that of the right junction; recombination at specific sites would then yield the two types of virus and rejoined genomic DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrastructural analysis of the polydnavirus of the braconid wasp Chelonus inanitus revealed that virions consist of one cylindrical nucleocapsid enveloped by a single unit membrane. Nucleocapsids have a constant diameter of 33.7 +/- 1.4 nm and a variable length of between 8 and 46 nm. Spreading of viral DNA showed that the genome consists of circular dsDNA molecules of variable sizes and measurement of the contour lengths indicated sizes of between 7 and 31 kbp. When virions were exposed to osmotic shock conditions to release the DNA, only one circular molecule was released per particle suggesting that the various DNA molecules are singly encapsidated in this bracovirus. The viral genome was seen to consist of at least 10 different segments and the aggregate genome size is in the order of 200 kbp. By partial digestion of viral DNA with HindIII or EcoRI in the presence of ethidium bromide and subsequent ligation with HindIII-cut pSP65 or EcoRI-cut pSP64 and transfection into Escherichia coli, libraries of 103 HindIII and 23 EcoRI clones were obtained. Southern blots revealed that complete and unrearranged segments were cloned with this approach, and restriction maps for five segments were obtained. Part of a 16.8 kbp segment was sequenced, found to be AT-rich (73%) and to contain six copies of a 17 bp repeated sequence. The development of the female reproductive tract in the course of pupal-adult development of the wasp was investigated and seen to be strictly correlated with the pigmentation pattern. By the use of a semiquantitative PCR, replication of viral DNA was observed to initiate at a specific stage of pupal-adult development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maternal factors introduced into host insects by endoparasitoid wasps are usually essential for successful parasitism. This includes polydnaviruses (PDVs) that are produced in the reproductive organ of female hymenopteran endoparasitoids and are injected, together with venom proteins, into the host hemocoel at oviposition. Inside the host, PDVs enter various tissue cells and hemocytes where viral genes are expressed, leading to developmental and physiological alterations in the host, including the suppression of the host immune system. Although several studies have shown that some PDVs are only effective when accompanied by venom proteins, there is no report of an active venom ingredient(s) facilitating PDV infection and/or gene expression. In this study, we describe a novel peptide (Vn1.5) isolated from Cotesia rubecula venom that is required for the expression of C. rubecula bracoviruses (CrBVs) in host hemocytes (Pieris rapae), although it is not essential for CrBV entry into host cells. The peptide consists of 14 amino acids with a molecular mass of 1598 Da. In the absence of Vn1.5 or total venom proteins, CrBV genes are not expressed in host cells and did not cause inactivation of host hemocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endoporasitoid wasps have evolved various mechanisms to ensure successful development of their progeny, including co-injection of a cocktail of maternal secretions into the host hemocoel, including venom, calyx fluid, and polydnoviruses. The components of each type of secretion may influence host physiology and development independently or in a synergistic fashion. For example, venom fluid consists of several peptides and proteins that promote expression of polydnavirus genes in addition to other activities, such as inhibition of prophenoloxidase activation, inhibition of hemocytes spreading and aggregation, and inhibition of development. This review provides a brief overview of advances and prospects in the study of venom proteins from polydnavirus-producing endoparositoid wasps with a special emphasis on the role of C. rubecula venom proteins in host-parositoid interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The larval endoparasitoid Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae) has a toolbox of biological weapons to secure for host colonization and the successful parasitization of its host Heliothis virescens (F.) (Lepidoptera: Noctuidae). The cDNA of a putative chitinase has been previously isolated and initially characterized from teratocytes of this parasitoid among the plethora of molecules available in the venom and calyx fluids injected by females, oral and/or anal secretions released by the parasitoid larvae and/or produced by the expression of genes of the symbiotic associated polydnavirus. This putative chitinase has been initially associated with the host cuticle digestion to allow for parasitoid egression and with the asepsis of the host environment, acting as an antimicrobial. As chitinases are commonly expressed in plants against plant pathogens, the chitinase derived from the teratocytes of T. nigriceps is a potential tool for the development of insect pest control methods based on the disruption of the perithrophic membrane of herbivores. Therefore, we aimed to characterize the activity of the putative chitinase from teratocytes of T. nigriceps (Tnchi) produced using the Escherichia coli expression system and its potential to control H. virescens larvae when expressed into transgenic tobacco plants. The purified E. coli-produced Tnchi protein showed no chitinolitic activity, but was active in binding with colloidal and crystalline chitins in water and with colloidal chitin in buffered solution (pH = 6.74). Transgenic tobacco plants showed no enhanced chitinolitic activity relative to control plants, but survival of three-day old larvae of H. virescens was severely affected when directly fed on transgenic tobacco leaves expressing the recombinant Tnchi protein. Some properties of the Tnchi protein and the potential use of Tnchi-transgenic plants to control plant pests are discussed. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most parasitic wasps inject maternal factors into the host hemocoel to suppress the host immune system and ensure successful development of their progeny. Melanization is one of the insect defence mechanisms against intruding pathogens or parasites. We previously isolated from the venom of Cotesia rubecula a 50 kDa protein that blocked melanization in the hemolymph of its host, Pieris rapae [Insect Biochem. Mol. Biol. 33 (2003) 1017]. This protein, designated Vn50, is a serine proteinase homolog (SPH) containing an amino-terminal clip domain. In this work, we demonstrated that recombinant Vn50 bound P. rapae hemolymph components that were recognized by antisera to Tenebrio molitor prophenoloxidase (proPO) and Manduca sexta proPO-activating proteinase (PAP). Vn50 is stable in the host hemolymph-it remained intact for at least 72 It after parasitization. Using M. sexta as a model system, we found that Vn50 efficiently down-regulated proPO activation mediated by M. sexta PAP-1, SPH-1, and SPH-2. Vn50 did not inhibit active phenoloxidase (PO) or PAP-1, but it significantly reduced the proteolysis of proPO. If recombinant Vn50 binds P. rapae proPO and PAP (as suggested by the antibody reactions), it is likely that the molecular interactions among M. sexta proPO, PAP-1, and SPHs were impaired by this venom protein. A similar strategy might be employed by C rubecula to negatively impact the proPO activation reaction in its natural host. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polydnaviruses are endogenous particles that are crucial for the survival of endoparasitoid wasps, providing active suppression of the immune function of the lepidopteran host in which wasp larvae develop. The Cotesia rubecula bracovirus (CrBV) is unique in that only four gene products are detected in larval host (Pieris rapae) tissues and expression of CrBV genes is transient, occurring between 4 and 12 h post-parasitization. Two of the four genes, CrV1 and CrV3, have been characterized. CrV1 is a secreted glycoprotein that has been implicated in depolymerization of the actin cytoskeleton of host haemocytes, leading to haemocyte inactivation; CrV3 is a multimeric C-type lectin that shares homology with insect immune lectins. Here, a third CrBV-specific gene is described, CrV2, which is expressed in larval P. rapae tissues. CrV2, which is transcribed in haemocytes and fat body cells, has an ORF of 963 bp that produces a glycoprotein of approximately 40 kDa. CrV2 is secreted into haemolymph and appears to be internalized by host haemocytes. CrV2 has a coiled-coil region predicted at its C-terminus, which may be involved in the formation of putative CrV2 trimers that are detected in haemolymph of parasitized host larvae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endoparasitoid insects introduce maternal factors into the body of their host at oviposition to suppress cellular defences for the protection of the developing parasitoid. We have shown that transient expression of polydnavirus genes from a hymenopteran parasitoid Cotesia rubecula (CrPDV) is responsible for the inactivation of hemocytes from the lepidopteran host Pieris rapae. Since the observed downregulation of CrPDV genes in infected host tissues is not due to cis-regulatory elements at the CrV1 gene locus, we speculated that the termination of CrPDV gene expression may be due to cellular inactivation caused by the CrV1-mediated immune suppression of infected tissues. To test this assumption, we isolated an imaginal disc growth factor (IDGF) that is expressed in fat body and hemocytes, the target of viral infection and expression of CrPDV genes. Time-course experiments showed that the level of P. rapae IDGF is not affected by parasitization and polydnavirus infection. However, the amount of highly expressed genes, such as storage proteins, arylphorin and lipophorin, are significantly reduced following parasitization. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polydnaviruses (PDVs) are endogenous particles that are used by some endoparasitic hymenoptera to disrupt host immunity and development. Recent analyses of encapsidated PDV genes have increased the number of known PDV gene families, which are often closely related to insect genes. Several PDV proteins inactivate host haemocytes by damaging their actin cytoskeleton. These proteins share no significant sequence homology and occur in polyphyletic PDV genera, possibly indicating that convergent evolution has produced functionally similar immune-suppressive molecules causing a haemocyte phenotype characterised by damaged cytoskeleton and inactivation. These phenomena provide further insights into the immune-suppressive activity of PDVs and raise interesting questions about PDV evolution, a topic that has puzzled researchers ever since the discovery of PDVs.