110 resultados para Polyadenylation
Resumo:
Cleavage and polyadenylation factor (CPF) is a multi‐protein complex that functions in pre‐mRNA 3′‐end formation and in the RNA polymerase II (RNAP II) transcription cycle. Ydh1p/Cft2p is an essential component of CPF but its precise role in 3′‐end processing remained unclear. We found that mutations in YDH1 inhibited both the cleavage and the polyadenylation steps of the 3′‐end formation reaction in vitro. Recently, we demonstrated that an important function of CPF lies in the recognition of poly(A) site sequences and RNA binding analyses suggesting that Ydh1p/Cft2p interacts with the poly(A) site region. Here we show that mutant ydh1 strains are deficient in the recognition of the ACT1 cleavage site in vivo. The C‐terminal domain (CTD) of RNAP II plays a major role in coupling 3′‐end processing and transcription. We provide evidence that Ydh1p/Cft2p interacts with the CTD of RNAP II, several other subunits of CPF and with Pcf11p, a component of CF IA. We propose that Ydh1p/Cft2p contributes to the formation of important interaction surfaces that mediate the dynamic association of CPF with RNAP II, the recognition of poly(A) site sequences and the assembly of the polyadenylation machinery on the RNA substrate.
Resumo:
Obtaining pure mRNA preparations from prokaryotes has been difficult, if not impossible, for want of a poly(A) tail on these messages, We have used poly(A) polymerase from yeast to effect specific polyadenylation of Escherichia coli polysomal mRNA in the presence of magnesium and manganese, The polyadenylated total mRNA, which could be subsequently purified by binding to and elution from oligo(dT) beads, had a size range of 0.4-4.0 kb. We have used hybridization to a specific plasmid-encoded gene to further confirm that the polyadenylated species represented mRNA, Withdrawal of Mg2+ from the polyadenylation reaction rRNA despite the presence of Mn2+, indicating the vital role of Mg2+ in maintaining the native structure of polysomes, Complete dissociation of polysomes into ribosomal subunits resulted in quantitative polyadenylation of both 16S and 23S rRNA species, Chromosomal lacZ gene-derived messages were quantitatively recovered in the oligo(dT)-bound fraction, as demonstrated by RT-PCR analysis, Potential advantages that accrue from the availability of pure total mRNA from prokaryotes is discussed.
Resumo:
Polyadenylation of 3 ' -forming in eukaryote concerns three elements located in precursor mRNA downstream region: efficiency element (EE), position element (PE) and the actual site for cleavage and polyadenylation. Several base sequences of EE and PE have
Resumo:
DOG1 is a key regulator of seed dormancy in Arabidopsis and other plants. Interestingly, the C-terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis DOG1 transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3' processing complex display weakened seed dormancy in parallel with defects in DOG1 proximal polyadenylation site selection, suggesting that the short DOG1 transcript, is functional. This is corroborated by the finding that the proximally polyadenylated short DOG1 mRNA is translated in vivo and complements the dog1 mutation. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated DOG1 mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterize a set of mutants in RNA 3' processing complex required for production of proximally polyadenylated functional DOG1 transcript.
Resumo:
Transcription termination of messenger RNA (mRNA) is normally achieved by polyadenylation followed by Rat1p-dependent 5'-3' exoribonuleolytic degradation of the downstream transcript. Here we show that the yeast ortholog of the dsRNA-specific ribonuclease III (Rnt1p) may trigger Rat1p-dependent termination of RNA transcripts that fail to terminate near polyadenylation signals. Rnt1p cleavage sites were found downstream of several genes, and the deletion of RNT1 resulted in transcription readthrough. Inactivation of Rat1p impaired Rnt1p-dependent termination and resulted in the accumulation of 3' end cleavage products. These results support a model for transcription termination in which cotranscriptional cleavage by Rnt1p provides access for exoribonucleases in the absence of polyadenylation signals.
Resumo:
Ein essentieller Bestandteil in dem Mechanismus der Translationskontrolle sind RNA-Protein-Wechselwirkungen. Solche Interaktionen konnten in Translationssystemen an zwei unabhängigen cis-regulierenden Elementen durch in vitro-Bindungsanalysen mit individuellen rekombinanten Proteinen dokumentiert werden. Im Fall des translational control elements (TCE), welches ein konserviertes Sequenz-Element in der Mst(3)CGP-Genfamilie darstellt, wird eine negative Translationskontrolle durch die Bindung der Proteine CG3213, CG12470, CG1898, dFMR1, Exuperantia und Orb2 an diese Sequenz vermittelt (Stinski, 2011). Neben den in Bindungsstudien positiv getesteten Kandidaten dFMR1 und Orb2 (Stinski, 2011) wurde in der vorliegenden Dissertation CG3213 als weiterer direkter Bindungspartner an das TCE dokumentiert. Ein Abgleich der genomweiten Zusammenstellung von Proteininteraktionen in der Datenbank InterologFinder lieferte zwei weitere potentielle Kandidaten: CG34404 und CG3727. Allerdings schließen Northern-Analysen und das Proteinexpressionsmuster eine zentrale Rolle in der Drosophila-Spermatogenese für diese nahezu aus. In Kolokalisationsstudien einiger TCE-Komplex-Kandidaten mit CG3213 als Referenz konnten eindeutige Übereinstimmungen der Fluoreszenzmuster mit CG12470 in der postmeiotischen Phase beschrieben werden, wohingegen mit Orb2 (postmeiotisch) und CG1898 (prämeiotisch) nur eine geringe Kolokalisation erkannt wurde. Punktstrukturen in den Verteilungsmustern sowohl von CG3213 als auch von CG12470 ließen sich nicht mit ER- und mitochondrienspezifischen Markern korrelieren. Im Anschluss der Meiose konnte eine deutliche Intensitätserhöhung des CG3213-Proteins beobachtet werden, was eventuell durch eine veränderte Translationseffizienz zustande kommen könnte. Exuperantia (Exu) stellt einen bekannten Regulator für eine Reihe von translationskontrollierten mRNAs dar (Wang und Hazelrigg, 1994). Die Quantifizierungen der CG3213-mRNA in exu-mutantem Hintergrund bestätigen, dass auch die Transkriptmenge der CG3213-mRNA durch Exu reguliert wird, was die obige Interpretation stützen würde. Für das zweite cis-regulierende Element, das cytoplasmic polyadenylation element (CPE), konnte eine direkte Bindung mit dem CPEB-Homolog in Drosophila (Orb2) gezeigt werden, welches auch eine Komponente des mst87F-RNP-Komplexes ist. Ein vermuteter Interaktionspartner dieses CPEBs ist Tob, weshalb die Verteilung beider Proteine in einem Kombinationsstamm verglichen wurde. In dem teilweise übereinstimmenden Fluoreszenzmuster ist Tob an den distalen Spermatidenenden auffallend konzentriert. Das gesamte Tob-Muster jedoch legt eine Verteilung in den Mitochondrien nahe, wie die MitoTracker®-Färbung belegt. Somit wurde erstmals ein Mitglied der Tob/BTG-Genfamilie in der Drosophila-Spermatogenese mit Mitochondrien in Verbindung gebracht. Die Lokalisierung dieser Proteine ist bislang unklar, jedoch konnte eine Kernlokalisation trotz der N-terminalen NLS-Sequenz mit Hilfe einer Kernfärbung ausgeschlossen werden.
Resumo:
mRNA 3′ polyadenylation is central to mRNA biogenesis in prokaryotes and eukaryotes, and is implicated in numerous aspects of mRNA metabolism, including efficiency of mRNA export from the nucleus, message stability, and initiation of translation. However, due to the great complexity of the eukaryotic polyadenylation apparatus, the mechanisms of RNA 3 ′ end processing have remained elusive. Although the RNA processing reactions leading to polyadenylated messenger RNA have been studied in many systems, and much progress has been made, a complete understanding of the biochemistry of the poly(A) polymerase enzyme is still lacking. My research uses Vaccinia virus as a model system to gain a better understanding of this complicated polyadenylation process, which consist of RNA binding, catalysis and polymerase translocation. ^ Vaccinia virus replicates in the cytoplasm of its host cell, so it must employ its own poly(A) polymerase (PAP), a heterodimer of two virus encoded proteins, VP55 and VP39. VP55 is the catalytic subunit, adding 30 adenylates to a non-polyadenylated RNA in a rapid processive manner before abruptly changing to a slow, non-processive mode of adenylate addition and dissociating from the RNA. VP39 is the stimulatory subunit. It has no polyadenylation catalytic activity by itself, but when associated with VP55 it facilitates the semi-processive synthesis of tails several hundred adenylates in length. ^ Oligonucleotide selection and competition studies have shown that the heterodimer binds a minimal motif of (rU)2 (N)25 U, the “heterodimer binding motif”, within an oligonucleotide, and its primer selection for polyadenylation is base-type specific. ^ Crosslinking studies using photosensitive uridylate analogs show that within a VP55-VP39-primer ternary complex, VP55 comes into contact with all three required uridylates, while VP39 only contacts the downstream uridylate. Further studies, using a backbone-anchored photosensitive crosslinker show that both PAP subunits are in close proximity to the downstream −10 to −21 region of 50mer model primers containing the heterodimer binding motif. This equal crosslinking to both subunits suggests that the dimerization of VP55 and VP39 creates either a cleft or a channel between the two subunits through which this region of RNA passes. ^ Peptide mapping studies of VP39 covalently crosslinked to the oligonucleotide have identified residue R107 as the amino acid in close proximity to the −10 uridylate. This helps us project a conceptual model onto the known physical surface of this subunit. In the absence of any tertiary structural data for VP55, we have used a series of oligonucleotide selection assays, as well as crosslinking, nucleotide transfer assays, and gel shift assays to gain insight into the requirements for binding, polyadenylation and translocation. Collectively, these data allow us to put together a comprehensive model of the structure and function of the polyadenylation ternary complex consisting of VP39, VP55 and RNA. ^
Resumo:
Polyadenylation at the 3′ terminus has long been considered a specific feature of mRNA and a few other unstable RNA species. Here we show that stable RNAs in Escherichia coli can be polyadenylated as well. RNA molecules with poly(A) tails are the major products that accumulate for essentially all stable RNA precursors when RNA maturation is slowed because of the absence of processing exoribonucleases; poly(A) tails vary from one to seven residues in length. The polyadenylation process depends on the presence of poly(A) polymerase I. A stochastic competition between the exoribonucleases and poly(A) polymerase is proposed to explain the accumulation of polyadenylated RNAs. These data indicate that polyadenylation is not unique to mRNA, and its widespread occurrence suggests that it serves a more general function in RNA metabolism.
Resumo:
Many genes have been described and characterized that have alternative polyadenylation signals at the 3′-end of their pre-mRNAs. Many of these same messages also contain destabilization motifs responsible for rapid degradation of the mRNA. Polyadenylation site selection can thus determine the stability of an mRNA. Fully modified 2′-O-methoxy ethyl/phosphorothioate oligonucleotides that hybridize to the 3′-most polyadenylation site or signal of E-selectin were able to inhibit polyadenylation at this site and redirect it to one of two upstream cryptic sites. The shorter transcripts produced after antisense treatment have fewer destabilization sequences, increased mRNA stability and altered protein expression. This study demonstrates that antisense oligonucleotides can be successfully employed to redirect polyadenylation. This is the first demonstration of the use of oligonucleotides to increase, rather than decrease, abundance of a message.
Resumo:
The analysis of a human thyroid serial analysis of gene expression (SAGE) library shows the presence of an abundant SAGE tag corresponding to the mRNA of thyroglobulin (TG). Additional, less abundant tags are present that can not be linked to any other known gene, but show considerable homology to the wild-type TG tag. To determine whether these tags represent TG mRNA molecules with alternative cleavage, 3′-RACE clones were sequenced. The results show that the three putative TG SAGE tags can be attributed to TG transcripts and reflect the use of alternative polyadenylation cleavage sites downstream of a single polyadenylation signal in vivo. By screening more than 300 000 sequences corresponding to human, mouse and rat transcripts for this phenomenon we show that a considerable percentage of mRNA transcripts (44% human, 22% mouse and 22% rat) show cleavage site heterogeneity. When analyzing SAGE-generated expression data, this phenomenon should be considered, since, according to our calculations, 2.8% of human transcripts show two or more different SAGE tags corresponding to a single gene because of alternative cleavage site selection. Both experimental and in silico data show that the selection of the specific cleavage site for poly(A) addition using a given polyadenylation signal is more variable than was previously thought.
Resumo:
Cleavage and polyadenylation of mRNA 3′ ends in Saccharomyces cerevisiae requires several factors, one of which is cleavage factor I (CF I). Purification of CF I activity from yeast extract has implicated numerous proteins as functioning in both cleavage and/or polyadenylation. Through reconstitution of active CF I from separately expressed and purified proteins, we show that CF I contains five subunits, Rna14, Rna15, Pcf11, Clp1, and Hrp1. These five are necessary and sufficient for reconstitution of cleavage activity in vitro when mixed with CF II, and for specific polyadenylation when mixed with polyadenylation factor I, purified poly(A) polymerase, and poly(A) binding protein. Analysis of the individual protein–protein interactions supports an architectural model for CF I in which Pcf11 simultaneously interacts with Rna14, Rna15, and Clp1, whereas Rna14 bridges Rna15 and Hrp1.
Resumo:
Some foreign genes introduced into plants are poorly expressed, even when transcription is controlled by a strong promoter. Perhaps the best examples of this problem are the cry genes of Bacillus thuringiensis (B.t.), which encode the insecticidal proteins commonly referred to as B.t. toxins. As a step toward overcoming such problems most effectively, we sought to elucidate the mechanisms limiting the expression of a typical B.t.-toxin gene, cryIA(c), which accumulates very little mRNA in tobacco (Nicotiana tabacum) cells. Most cell lines transformed with the cryIA(c) B.t.-toxin gene accumulate short, polyadenylated transcripts. The abundance of these transcripts can be increased by treating the cells with cycloheximide, a translation inhibitor that can stabilize many unstable transcripts. Using a series of hybridizations, reverse-transcriptase polymerase chain reactions, and RNase-H-digestion experiments, poly(A+) addition sites were identified in the B.t.-toxin-coding region corresponding to the short transcripts. A fourth polyadenylation site was identified using a chimeric gene. These results demonstrate for the first time to our knowledge that premature polyadenylation can limit the expression of a foreign gene in plants. Moreover, this work emphasizes that further study of the fundamental principles governing polyadenylation in plants will have basic as well as applied significance.
Resumo:
Limited but significant sequence similarity has been observed between an uncharacterized human protein, SIN1, and the S. pombe SIN1, Dictyostelium RIP3 and S. cerevisiae AVO1 proteins. The human Sin1 gene has been automatically predicted (MAPKAP1; GenBank accession number NM_024117); however, this sequence appears to be incomplete. In this study, we have cloned and characterized the full-length human Sin1 mRNA and identified a highly conserved domain that defines the family of SIN1 orthologues, members of which are widely distributed in the fungal and metazoan kingdoms. We demonstrate that Sin1 transcripts can use alternative polyadenylation signals and describe a number of Sin1 splice variants that potentially encode functionally different isoforms. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
RNA polymerase II (pol II) transcription termination requires co‐transcriptional recognition of a functional polyadenylation signal, but the molecular mechanisms that transduce this signal to pol II remain unclear. We show that Yhh1p/Cft1p, the yeast homologue of the mammalian AAUAAA interacting protein CPSF 160, is an RNA‐binding protein and provide evidence that it participates in poly(A) site recognition. Interestingly, RNA binding is mediated by a central domain composed of predicted β‐propeller‐forming repeats, which occurs in proteins of diverse cellular functions. We also found that Yhh1p/Cft1p bound specifically to the phosphorylated C‐terminal domain (CTD) of pol II in vitro and in a two‐hybrid test in vivo. Furthermore, transcriptional run‐on analysis demonstrated that yhh1 mutants were defective in transcription termination, suggesting that Yhh1p/Cft1p functions in the coupling of transcription and 3′‐end formation. We propose that direct interactions of Yhh1p/Cft1p with both the RNA transcript and the CTD are required to communicate poly(A) site recognition to elongating pol II to initiate transcription termination.
Resumo:
The contents of fibroin H RNA as a function of development have been quantitated in the posterior silk glands of Bombyx mori larvae on different days of 4th and 5th instars. The fibroin RNA levels increased during the feeding stages of larvae and the RNA got completely degraded during the interim moult. The patterns of accumulation of fibroin RNA were similar in both the instars. Although there was considerable increase in the fibroin RNA content during the 5th larval instar, the relative abundance of fibroin RNA in the total RNA was fairly constant during the 4th and 5th instars. The increased content of fibroin RNA in 5th instar was the consequence of an overall increase in transcription accompanying the development progress, rather than specific increase only in fibroin transcription. The contents of fibroin protein in the 4th and 5th instars of development have also been quantitated making use of a sensitive radioimmune assay with a purified, antifibroin antibody. There were substantial differences between 4th and 5th instars in the absolute fibroin contents as well as the relative proportion of fibroin in the total proteins. These results implied that although the fibroin gene was transcribed at the same efficiency during the 4th and 5th instars, the translational efficiency was much lower during the 4th instar. The extent of polyadenylation of fibroin RNA was similar in both instars. However, there was a two-fold increase in the polysome association of fibroin RNA in the 5th instar. Over and above this, there was substantial increase during the 5th instar in the contents of those tRNAs. (e.g. Gly, Ala and Ser) which are abundantly represented in fibroin and therefore directly related to the expression of fibroin. The increased polysome association of fibroin mRNA and the adequate supply of cognate tRNAs in the 5th instar, together contributes to the translational regulation of fibroin in a developmental stage-specific manner. Based on these observations, we propose that translational regulation plays a major role in the development stage-specific synthesis of fibroin in Bombyx mori.