881 resultados para Poly(ethylene oxide) blends


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miscibility and phase separation in the blends of phenolphthalein poly(aryl ether ketone) (PPAEK) and poly(ethylene oxide) (PEO) were investigated by means of differential scanning calorimetry (DSC). The PPAEK/PEO blends prepared by solution casting from N,N-dimethylformamide (DMF) displayed single composition-dependent glass transition temperatures (T-g), intermediate between those of the pure components, suggesting that the blend system is miscible in the amorphous state at all compositions. All the blends underwent phase separation at higher temperatures and the system exhibited a lower critical solution temperature (LCST) behavior. A step-heating thermal analysis was designed to determine the phase boundaries with DSC. The significant changes in the thermal properties of blends were utilized to judge the mixing status for the blends and the phase diagram was thus established. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer blends based on poly(vinylidene fluoride), PVDF and poly(ethylene oxide), PEO, with varying compositions have been prepared by solvent casting, the polymer blend films being obtained from solutions in dimethyl formamide at 70ºC. Under these conditions PVDF crystallizes from solution while PEO remains in the molten state. Then, PEO crystallizes from the melt confined by PVDF crystalls during cooling to room temperature. PVDF crystallized from DMF solutions adopt predominantly the electroactive β-phase (85%). Nevertheless when PEO is introduced in the polymer blend the β-phase content decreases slightly to 70%. The piezoelectric coefficient (d33) in pristine PVDF is -5 pC/N and decreases with increasing PEO content in the PVDF/PEO blends. Blend morphology, observed by electron and atomic force microscopy, shows the confinement of PEO between the already formed PVDF crystals. On the other hand the sample contraction when PEO is extracted from the blend with water (which is not a solvent for PVDF) allows proving the co-continuity of both phases in the blend. PEO crystallization kinetics have been characterized by DSC both in isothermal and cooling scans experiments showing important differences in crystalline fraction and crystallization rate with sample composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous polymer membranes based on poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) copolymers, P(VDF-TrFE)/PEO, are prepared through the, from partial to total, elimination of PEO, leading to interconnected micropores in the polymer blends. Electrolyte uptake, thermal and mechanical properties depend on the amount of PEO present in the polymer blend. Further, the degree of crystallinity of PEO and the elastic modulus (E´) of the polymer blend decrease with increasing PEO removal. Electrical properties of the polymer blend membranes are influenced by the porosity and are dominated by diffusion. The temperature dependence of ionic conductivity follows the Arrhenius behavior. It is the highest for the membranes with a volume fraction of pores of 44% (i.e, 90% PEO removal), reaching a value of 0.54 mS.cm-1 at room temperature. Battery performance was determined by assembling Li/C-LiFePO4 swagelok cells. The polymer blends with 90% PEO removal exhibit rate (124 mAhg-1 at C/5 and 47 mAhg-1 at 2C) and cycling capabilities suitable for lithium ion battery applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural or synthetic materials may be used to aid tissue repair of fracture or pathologies where there has been a loss of bone mass. Polymeric materials have been widely studied, aiming at their use in orthopaedics and aesthetic plastic surgery. Polymeric biodegradable blends formed from two or more kinds of polymers could present faster degradation rate than homopolymers. The purpose of this work was to compare the biological response of two biomaterials: poly(L-lactic acid)PLLA and poly(L-lactic acid)PLLA/poly(ethylene oxide)PEO blend. Forty four-week-old rats were divided into two groups of 20 animals, of which one group received PLLA and the other PLLA/PEO implants. In each of the animals, one of the biomaterials was implanted in the proximal epiphysis of the right tibia. Each group was divided into subgroups of 5 animals, and sacrificed 2, 4, 8 and 16 weeks after surgery, respectively. Samples were then processed for analysis by light microscopy. Newly formed bone was found around both PLLA and PLLA/PEO implants. PLLA/PEO blends had a porous morphology after immersion in a buffer solution and in vivo implantation. The proportion 50/50 PLLA/PEO blend was adequate to promote this porous morphology, which resulted in gradual bone tissue growth into the implant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach to electrochromics, based on the reversible coating-dissolution of an oxide from an inorganic electrochromic electrolyte consisting of a silver-amine complex in a polymer electrolyte (PEO), has proven successful. The reversible electrodeposition of silver onto indium-tin oxide coated glass (ITO) was investigated and the influence of HClO(4) and KI was evaluated. Several characteristics of the electrolyte Ag-PEO make it suitable for use in electrochromic reversible silver electrodeposition devices, such as visible absorption spectrum with an absorbance variation of 60%, an electrochromic efficiency of 5.2 cm(2) C(-1) and an ionic conductivity 4.4 x 10(-4) S cm(-1). The addition of perchloric acid improved the transparency of Ag-PEO, and potassium iodide (KI) was fundamental in setting up the process of reversible silver electrodeposition in the PEO polymeric matrix. A description of the electrochemical processes implied is presented. A number of approaches focusing on the improvement of system performance are tested. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New hybrid composites based on mesostructured V(2)O(5) containing intercalated poly(ethylene oxide), poly-o-methoxyaniline and poly(ethylene oxide)/poly-o-methoxyaniline were prepared. The results suggest that the polymers were intercalated into the layers of the mesostructured V(2)O(5). Electrochemical studies showed that the presence of both polymers in the mesostructured V(2)O(5) (ternary hybrid) leads to an increase in total charge and stability after several cycles compared with binary hybrid composites. This fact makes this material a potential component as cathode for lithium ion intercalation and further, a promising candidate for applications in batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motion of chains of poly(ethylene oxide) within the interlayer spacing of 2:1 phyllosilicate/montmorillonite was studied with H-1 and C-13 NMR spectroscopy. Measurements of the H-1 NMR line widths and relaxation times across a large temperature range were used to determine the effect of bulk thermal transitions on polymer chain motion within the nanocomposites. The results were consistent with previous reports of low apparent activation energies of motion. Details of the frequency and geometry of motion were obtained from a comparison of the C-13 cross-polarity/magic-angle spinning spectra and relaxation times of the nanocomposite with those of the pure polymer. (C) 2001 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducing poly(ethylene oxide) surfactant to aluminum hydrate colloids can effectively direct the crystal growth of boehmite and the crystal morphology of final gamma-alumina crystallites. Fibrous crystallites of gamma-alumina about 3-4 nm thick and 30-60 nm long are obtained. They stack randomly, resulting in a structure with a low contact area between the fibers but with a very large porosity. Such a structure exhibits strong resistance to sintering when heated to high temperatures. A sample retains a BET surface area of 68 m(2)/g, after being heated to 1473 K. The surfactant molecules form micelles that interact with the colloid particles of aluminum hydroxide through hydrogen bonding. This interaction is not sufficient to change the intrinsic crystal structure of boehmite, but induces profound changes in the morphology of boehmite crystallites and their growth. The surfactant-induced fiber formation (SIFF) process has distinct features from templated synthesis but shows similarities in some respects to biomineralization processes in which inorganic crystals with complex morphological shapes can be formed in biological systems. SIFF offers an effective approach to create new nanostructures of inorganic oxide from aqueous media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbenes photogenerated from the novel bisdiazirine, 1, 3-bis(3-(trifluoromethyl)diazirin-3-yl) benzene 1, have been applied successfully to cross-linking of mono-methyl poly(ethylene oxide) (MePEO5000) in the presence of dichloromethane, leading to the simultaneous incorporation of alkylhalide functionalities. The PEO-based gels swell in a wide range of solvents with polarity index values varying from 3.1 to 9.0. Reaction of the alkylhalide functionalities present in the gels with 4-phenylazophenol provided loading capacities of up to 0.20 mmol g(-1) and demonstrated the potential of these materials for gel-phase synthesis applications. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase diagram of a series of poly(1,2-octylene oxide)-poly(ethylene oxide) (POO-PEO) diblock copolymers is determined by small-angle X-ray scattering. The Flory-Huggins interaction parameter was measured by small-angle neutron scattering. The phase diagram is highly asymmetric due to large conformational asymmetry that results from the hexyl side chains in the POO block. Non-lamellar phases (hexagonal and gyroid) are observed near f(PEO) = 0.5, and the lamellar phase is observed for f(PEO) >= 0.5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between the nonionic surfactant C(12)E(5) and a high molar mass (M = 5.94 x 10(5)) poly(ethylene oxide) (PEG) in aqueous solution has been examined as a function of temperature by dynamic light scattering and fluorescence methods over a broad concentration range. Clusters of small surfactant micelles form within the PEO coil, leading to its extension. The hydrodynamic radius of the complex increases strongly with temperature as well as with the concentrations of surfactant and polymer. At high concentrations of the surfactant, the coil/micellar cluster complex coexists with free C(12)E(5) micelles in the solution. Fluorescence quenching measurements show a moderate micellar growth from 155 to 203 monomers in PEO-free solutions of C(12)E(5) over a wide concentration range (0.02-2.5%) at 8 degrees C. Below 0.25% C(12)E(5), the average aggregation number (N) of the micelles is smaller in the presence of PEO than in its absence. However, N increases with increasing surfactant concentration up to a plateau value of about 270 at about 1.2% (ca. 30 mM) C(12)E(5). At high surfactant concentrations, N is larger in the presence of polymer than in its absence, a finding which is connected to a significant lowering of the clouding temperature due to the PEO at these compositions. Similar results of increasing aggregation number followed by a plateau were also found at a fixed concentration of surfactant (2.5%) and varied PEO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic light scattering measurements have been made to elucidate changes in the coil conformation of a high molecular weight poly(ethylene oxide) (PEG) fraction when the non-ionic surfactant C(12)E(5) is present in dilute solutions. The measurements were made at 20 degrees C as functions of(a) the C(12)E(5) concentration at constant PEO concentration, (b) the PEO concentration at constant C(12)E(5) concentration, and (c) the C(12)E(5)/PEO concentration ratio. The influence of temperature on the interactions in terms of the relaxation time distributions was also examined up to the cloud point. It was found that when the C(12)E(5)/PEO weight ratio was >2 and when the temperature was >14 degrees C, the correlation functions became bimodal with well-separated components. The fast mode derives fi om individual surfactant micelles which are present in the solution at high number density. The appearance of the slow mode, which dominates the scattering, is interpreted as resulting from the formation of micellar clusters due to an excluded-volume effect when the high molar mass (M = 6 x 10(5)) PEO is added to the surfactant solution. It is shown that the micellar clusters form within the PEO coils and lead to a progressive swelling of the latter for steric reasons. The dimensions of the PEO/C(12)E(5) complex increase with increasing surfactant concentration to a value of R(H) approximate to 94 nm (R(g) approximate to 208 nm) at C-C12E5 = 3.5%. Fluorescence quenching measurements show that the average aggregation number of C(12)E(5) increases significantly on addition of the high molar mass PEG. With increasing temperature toward the cloud point the clusters increase in number density and/or become larger. The cloud point is substantially lower than that for C12E5 in water solution and is strongly dependent on the PEO concentration.