953 resultados para Polarimétrie radar
Resumo:
Les milieux humides remplissent plusieurs fonctions écologiques d’importance et contribuent à la biodiversité de la faune et de la flore. Même s’il existe une reconnaissance croissante sur l’importante de protéger ces milieux, il n’en demeure pas moins que leur intégrité est encore menacée par la pression des activités humaines. L’inventaire et le suivi systématique des milieux humides constituent une nécessité et la télédétection est le seul moyen réaliste d’atteindre ce but. L’objectif de cette thèse consiste à contribuer et à améliorer la caractérisation des milieux humides en utilisant des données satellites acquises par des radars polarimétriques en bande L (ALOS-PALSAR) et C (RADARSAT-2). Cette thèse se fonde sur deux hypothèses (chap. 1). La première hypothèse stipule que les classes de physionomies végétales, basées sur la structure des végétaux, sont plus appropriées que les classes d’espèces végétales car mieux adaptées au contenu informationnel des images radar polarimétriques. La seconde hypothèse stipule que les algorithmes de décompositions polarimétriques permettent une extraction optimale de l’information polarimétrique comparativement à une approche multipolarisée basée sur les canaux de polarisation HH, HV et VV (chap. 3). En particulier, l’apport de la décomposition incohérente de Touzi pour l’inventaire et le suivi de milieux humides est examiné en détail. Cette décomposition permet de caractériser le type de diffusion, la phase, l’orientation, la symétrie, le degré de polarisation et la puissance rétrodiffusée d’une cible à l’aide d’une série de paramètres extraits d’une analyse des vecteurs et des valeurs propres de la matrice de cohérence. La région du lac Saint-Pierre a été sélectionnée comme site d’étude étant donné la grande diversité de ses milieux humides qui y couvrent plus de 20 000 ha. L’un des défis posés par cette thèse consiste au fait qu’il n’existe pas de système standard énumérant l’ensemble possible des classes physionomiques ni d’indications précises quant à leurs caractéristiques et dimensions. Une grande attention a donc été portée à la création de ces classes par recoupement de sources de données diverses et plus de 50 espèces végétales ont été regroupées en 9 classes physionomiques (chap. 7, 8 et 9). Plusieurs analyses sont proposées pour valider les hypothèses de cette thèse (chap. 9). Des analyses de sensibilité par diffusiogramme sont utilisées pour étudier les caractéristiques et la dispersion des physionomies végétales dans différents espaces constitués de paramètres polarimétriques ou canaux de polarisation (chap. 10 et 12). Des séries temporelles d’images RADARSAT-2 sont utilisées pour approfondir la compréhension de l’évolution saisonnière des physionomies végétales (chap. 12). L’algorithme de la divergence transformée est utilisé pour quantifier la séparabilité entre les classes physionomiques et pour identifier le ou les paramètres ayant le plus contribué(s) à leur séparabilité (chap. 11 et 13). Des classifications sont aussi proposées et les résultats comparés à une carte existante des milieux humide du lac Saint-Pierre (14). Finalement, une analyse du potentiel des paramètres polarimétrique en bande C et L est proposé pour le suivi de l’hydrologie des tourbières (chap. 15 et 16). Les analyses de sensibilité montrent que les paramètres de la 1re composante, relatifs à la portion dominante (polarisée) du signal, sont suffisants pour une caractérisation générale des physionomies végétales. Les paramètres des 2e et 3e composantes sont cependant nécessaires pour obtenir de meilleures séparabilités entre les classes (chap. 11 et 13) et une meilleure discrimination entre milieux humides et milieux secs (chap. 14). Cette thèse montre qu’il est préférable de considérer individuellement les paramètres des 1re, 2e et 3e composantes plutôt que leur somme pondérée par leurs valeurs propres respectives (chap. 10 et 12). Cette thèse examine également la complémentarité entre les paramètres de structure et ceux relatifs à la puissance rétrodiffusée, souvent ignorée et normalisée par la plupart des décompositions polarimétriques. La dimension temporelle (saisonnière) est essentielle pour la caractérisation et la classification des physionomies végétales (chap. 12, 13 et 14). Des images acquises au printemps (avril et mai) sont nécessaires pour discriminer les milieux secs des milieux humides alors que des images acquises en été (juillet et août) sont nécessaires pour raffiner la classification des physionomies végétales. Un arbre hiérarchique de classification développé dans cette thèse constitue une synthèse des connaissances acquises (chap. 14). À l’aide d’un nombre relativement réduit de paramètres polarimétriques et de règles de décisions simples, il est possible d’identifier, entre autres, trois classes de bas marais et de discriminer avec succès les hauts marais herbacés des autres classes physionomiques sans avoir recours à des sources de données auxiliaires. Les résultats obtenus sont comparables à ceux provenant d’une classification supervisée utilisant deux images Landsat-5 avec une exactitude globale de 77.3% et 79.0% respectivement. Diverses classifications utilisant la machine à vecteurs de support (SVM) permettent de reproduire les résultats obtenus avec l’arbre hiérarchique de classification. L’exploitation d’une plus forte dimensionalitée par le SVM, avec une précision globale maximale de 79.1%, ne permet cependant pas d’obtenir des résultats significativement meilleurs. Finalement, la phase de la décomposition de Touzi apparaît être le seul paramètre (en bande L) sensible aux variations du niveau d’eau sous la surface des tourbières ouvertes (chap. 16). Ce paramètre offre donc un grand potentiel pour le suivi de l’hydrologie des tourbières comparativement à la différence de phase entre les canaux HH et VV. Cette thèse démontre que les paramètres de la décomposition de Touzi permettent une meilleure caractérisation, de meilleures séparabilités et de meilleures classifications des physionomies végétales des milieux humides que les canaux de polarisation HH, HV et VV. Le regroupement des espèces végétales en classes physionomiques est un concept valable. Mais certaines espèces végétales partageant une physionomie similaire, mais occupant un milieu différent (haut vs bas marais), ont cependant présenté des différences significatives quant aux propriétés de leur rétrodiffusion.
Resumo:
Diffraction tomographic imaging is applied to the imaging of shallowly buried targets with multi-bistatic arrays of transmitters and receivers.
Resumo:
A parametric study was carried out to investigate the effects on reconstructed images from a ground penetrating radar (GPR) due to (a) the centre frequency of the GPR excitation pulse, (b) the height of transmitting and receiving antennas above ground level, and (c) the proximity of the buried objects. An integrated software package was developed to streamline the computer simulation based on synthetic data generated by GPRMax.
Resumo:
The concept of radar was developed for the estimation of the distance (range) and velocity of a target from a receiver. The distance measurement is obtained by measuring the time taken for the transmitted signal to propagate to the target and return to the receiver. The target's velocity is determined by measuring the Doppler induced frequency shift of the returned signal caused by the rate of change of the time- delay from the target. As researchers further developed conventional radar systems it become apparent that additional information was contained in the backscattered signal and that this information could in fact be used to describe the shape of the target itself. It is due to the fact that a target can be considered to be a collection of individual point scatterers, each of which has its own velocity and time- delay. DelayDoppler parameter estimation of each of these point scatterers thus corresponds to a mapping of the target's range and cross range, thus producing an image of the target. Much research has been done in this area since the early radar imaging work of the 1960s. At present there are two main categories into which radar imaging falls. The first of these is related to the case where the backscattered signal is considered to be deterministic. The second is related to the case where the backscattered signal is of a stochastic nature. In both cases the information which describes the target's scattering function is extracted by the use of the ambiguity function, a function which correlates the backscattered signal in time and frequency with the transmitted signal. In practical situations, it is often necessary to have the transmitter and the receiver of the radar system sited at different locations. The problem in these situations is 'that a reference signal must then be present in order to calculate the ambiguity function. This causes an additional problem in that detailed phase information about the transmitted signal is then required at the receiver. It is this latter problem which has led to the investigation of radar imaging using time- frequency distributions. As will be shown in this thesis, the phase information about the transmitted signal can be extracted from the backscattered signal using time- frequency distributions. The principle aim of this thesis was in the development, and subsequent discussion into the theory of radar imaging, using time- frequency distributions. Consideration is first given to the case where the target is diffuse, ie. where the backscattered signal has temporal stationarity and a spatially white power spectral density. The complementary situation is also investigated, ie. where the target is no longer diffuse, but some degree of correlation exists between the time- frequency points. Computer simulations are presented to demonstrate the concepts and theories developed in the thesis. For the proposed radar system to be practically realisable, both the time- frequency distributions and the associated algorithms developed must be able to be implemented in a timely manner. For this reason an optical architecture is proposed. This architecture is specifically designed to obtain the required time and frequency resolution when using laser radar imaging. The complex light amplitude distributions produced by this architecture have been computer simulated using an optical compiler.
Resumo:
This work considers the problem of building high-fidelity 3D representations of the environment from sensor data acquired by mobile robots. Multi-sensor data fusion allows for more complete and accurate representations, and for more reliable perception, especially when different sensing modalities are used. In this paper, we propose a thorough experimental analysis of the performance of 3D surface reconstruction from laser and mm-wave radar data using Gaussian Process Implicit Surfaces (GPIS), in a realistic field robotics scenario. We first analyse the performance of GPIS using raw laser data alone and raw radar data alone, respectively, with different choices of covariance matrices and different resolutions of the input data. We then evaluate and compare the performance of two different GPIS fusion approaches. The first, state-of-the-art approach directly fuses raw data from laser and radar. The alternative approach proposed in this paper first computes an initial estimate of the surface from each single source of data, and then fuses these two estimates. We show that this method outperforms the state of the art, especially in situations where the sensors react differently to the targets they perceive.
Resumo:
This paper presents an approach to promote the integrity of perception systems for outdoor unmanned ground vehicles (UGV) operating in challenging environmental conditions (presence of dust or smoke). The proposed technique automatically evaluates the consistency of the data provided by two sensing modalities: a 2D laser range finder and a millimetre-wave radar, allowing for perceptual failure mitigation. Experimental results, obtained with a UGV operating in rural environments, and an error analysis validate the approach.
Resumo:
Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this problem since there might be an obstacle hidden behind the vegetation. In addition, dense vegetation typically needs to be considered as an obstacle. This paper addresses this problem by augmenting probabilistic traversability map constructed from laser data with ultra-wideband radar measurements. An adaptive detection threshold and a probabilistic sensor model are developed to convert the radar data to occupancy probabilities. The resulting map captures the fine resolution of the laser map but clears areas from the traversability map that are induced by obstacle-free foliage. Experimental results validate that this method is able to improve the accuracy of traversability maps in vegetated environments.
Resumo:
Large concentrations of magnetite in sedimentary deposits and soils with igneous parent material have been reported to affect geophysical sensor performance. We have undertaken the first systematic experimental effort to understand the effects of magnetite for ground-penetrating radar (GPR) characterization of the shallow subsurface. Laboratory experiments were conducted to study how homogeneous magnetite-sand mixtures and magnetite concentrated in layers affect the propagation behavior (velocity, attenuation) of high-frequency GPR waves and the reflection characteristics of a buried target. Important observations were that magnetite had a strong effect on signal velocity and reflection, at magnitudes comparable to what has been observed in small-scale laboratory experiments that measured electromagnetic properties of magnetite-silica mixtures. Magnetite also altered signal attenuation and affected the reflection characteristics of buried targets. Our results indicated important implications for several fields, including land mine detection, Martian exploration, engineering, and moisture mapping using satellite remote sensing and radiometers.
Resumo:
This paper presents an approach to mobile robot localization, place recognition and loop closure using a monostatic ultra-wide band (UWB) radar system. The UWB radar is a time-of-flight based range measurement sensor that transmits short pulses and receives reflected waves from objects in the environment. The main idea of the poposed localization method is to treat the received waveform as a signature of place. The resulting echo waveform is very complex and highly depends on the position of the sensor with respect to surrounding objects. On the other hand, the sensor receives similar waveforms from the same positions.Moreover, the directional characteristics of dipole antenna is almost omnidirectional. Therefore, we can localize the sensor position to find similar waveform from waveform database. This paper proposes a place recognitionmethod based on waveform matching, presents a number of experiments that illustrate the high positon estimation accuracy of our UWB radar-based localization system, and shows the resulting loop detection performance in a typical indoor office environment and a forest.
Resumo:
In vegetated environments, reliable obstacle detection remains a challenge for state-of-the-art methods, which are usually based on geometrical representations of the environment built from LIDAR and/or visual data. In many cases, in practice field robots could safely traverse through vegetation, thereby avoiding costly detours. However, it is often mistakenly interpreted as an obstacle. Classifying vegetation is insufficient since there might be an obstacle hidden behind or within it. Some Ultra-wide band (UWB) radars can penetrate through vegetation to help distinguish actual obstacles from obstacle-free vegetation. However, these sensors provide noisy and low-accuracy data. Therefore, in this work we address the problem of reliable traversability estimation in vegetation by augmenting LIDAR-based traversability mapping with UWB radar data. A sensor model is learned from experimental data using a support vector machine to convert the radar data into occupancy probabilities. These are then fused with LIDAR-based traversability data. The resulting augmented traversability maps capture the fine resolution of LIDAR-based maps but clear safely traversable foliage from being interpreted as obstacle. We validate the approach experimentally using sensors mounted on two different mobile robots, navigating in two different environments.
Resumo:
This study evaluates how the advection of precipitation, or wind drift, between the radar volume and ground affects radar measurements of precipitation. Normally precipitation is assumed to fall vertically to the ground from the contributing volume, and thus the radar measurement represents the geographical location immediately below. In this study radar measurements are corrected using hydrometeor trajectories calculated from measured and forecasted winds, and the effect of trajectory-correction on the radar measurements is evaluated. Wind drift statistics for Finland are compiled using sounding data from two weather stations spanning two years. For each sounding, the hydrometeor phase at ground level is estimated and drift distance calculated using different originating level heights. This way the drift statistics are constructed as a function of range from radar and elevation angle. On average, wind drift of 1 km was exceeded at approximately 60 km distance, while drift of 10 km was exceeded at 100 km distance. Trajectories were calculated using model winds in order to produce a trajectory-corrected ground field from radar PPI images. It was found that at the upwind side from the radar the effective measuring area was reduced as some trajectories exited the radar volume scan. In the downwind side areas near the edge of the radar measuring area experience improved precipitation detection. The effect of trajectory-correction is most prominent in instant measurements and diminishes when accumulating over longer time periods. Furthermore, measurements of intensive and small scale precipitation patterns benefit most from wind drift correction. The contribution of wind drift on the uncertainty of estimated Ze (S) - relationship was studied by simulating the effect of different error sources to the uncertainty in the relationship coefficients a and b. The overall uncertainty was assumed to consist of systematic errors of both the radar and the gauge, as well as errors by turbulence at the gauge orifice and by wind drift of precipitation. The focus of the analysis is error associated with wind drift, which was determined by describing the spatial structure of the reflectivity field using spatial autocovariance (or variogram). This spatial structure was then used with calculated drift distances to estimate the variance in radar measurement produced by precipitation drift, relative to the other error sources. It was found that error by wind drift was of similar magnitude with error by turbulence at gauge orifice at all ranges from radar, with systematic errors of the instruments being a minor issue. The correction method presented in the study could be used in radar nowcasting products to improve the estimation of visibility and local precipitation intensities. The method however only considers pure snow, and for operational purposes some improvements are desirable, such as melting layer detection, VPR correction and taking solid state hydrometeor type into account, which would improve the estimation of vertical velocities of the hydrometeors.