994 resultados para Polar regions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reliability of the global reanalyses in the polar regions is investigated. The overview stems from an April 2006 Scientific Committee on Antarctic Research (SCAR) workshop on the performance of global reanalyses in high latitudes held at the British Antarctic Survey. Overall, the skill is much higher in the Arctic than the Antarctic, where the reanalyses are only reliable in the summer months prior to the modern satellite era. In the Antarctic, large circulation differences between the reanalyses are found primarily before 1979, when vast quantities of satellite sounding data started to be assimilated. Specifically for ERA-40, this data discontinuity creates a marked jump in Antarctic snow accumulation, especially at high elevations. In the Arctic, the largest differences are related to the reanalyses depiction of clouds and their associated radiation impacts; ERA-40 captures the cloud variability much better than NCEP1 and JRA-25, but the ERA-40 and JRA-25 clouds are too optically thin for shortwave radiation. To further contrast the reanalyses skill, cyclone tracking results are presented. In the Southern Hemisphere, cyclonic activity is markedly different between the reanalyses, where there are few matched cyclones prior to 1979. In comparison, only some of the weaker cyclones are not matched in the Northern Hemisphere from 1958-2001, again indicating the superior skill in this hemisphere. Although this manuscript focuses on deficiencies in the reanalyses, it is important to note that they are a powerful tool for climate studies in both polar regions when used with a recognition of their limitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have examined the atmospheric water cycle of both Polar Regions, pole wards of 60°N and 60°S, using the ERA-Interim re-analysis and high-resolution simulations with the ECHAM5 model for both the present and future climate based on the IPCC, A1B scenario, representative of the last three decades of the 21st century. The annual precipitation in ERA-Interim amounts to ~17000 km3 and is more or less the same in the Arctic and the Antarctic, but it is composed differently. In the Arctic the annual evaporation is some 8000 km3 but some 3000 km3 less in the Antarctica where the net horizontal transport is correspondingly larger. The net water transport of the model is more intense than in ERA-Interim, in the Arctic the difference is 2.5% and in the Antarctic it is 6.2%. Precipitation and net horizontal transport in the Arctic has a maximum in August and September. Evaporation peaks in June and July. The seasonal cycle is similar in Antarctica with the highest precipitation in the austral autumn. The largest net transport occurs at the end of the major extra-tropical storm tracks in the Northern Hemisphere such as the eastern Pacific and eastern north Atlantic. The variability of the model is virtually identical to that of the re-analysis and there are no changes in variability between the present climate and the climate at the end of the 21st century when normalized with the higher level of moisture. The changes from year to year are substantial with the 20 and 30-year records being generally too short to identify robust trends in the hydrological cycle. In the A1B climate scenario the strength of the water cycle increases by some 25% in the Arctic and by 19% in the Antarctica, as measured by annual precipitation. The increase in the net horizontal transport is 29% and 22% respectively, and the increase in evaporation correspondingly less. The net transport follows closely the Clausius-Clapeyron relation. There is 2 a minor change in the annual cycle of the Arctic atmospheric water cycle with the maximum transport and precipitation occurring later in the year. There is a small imbalance of some 4-6% between the net transport and precipitation minus evaporation. We suggest that this is mainly due to the fact the transport is calculated from instantaneous 6-hourly data while precipitation and evaporation is accumulated over a 6 hour period. The residual difference is proportionally similar for all experiments and hardly varies from year to year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy fluxes for polar regions are examined for two 30-year periods, representing the end of the 20th and 21st centuries, using data from high resolution simulations with the ECHAM5 climate model. The net radiation to space for the present climate agrees well with data from the Clouds and the Earth’s Radiant Energy System (CERES) over the northern polar region but shows an underestimation in planetary albedo for the southern polar region. This suggests there are systematic errors in the atmospheric circulation or in the net surface energy fluxes in the southern polar region. The simulation of the future climate is based on the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The total energy transport is broadly the same for the two 30 year periods, but there is an increase in the moist energy transport of the order of 6 W m−2 and a corresponding reduction in the dry static energy. For the southern polar region the proportion of moist energy transport is larger and the dry static energy correspondingly smaller for both periods. The results suggest a possible mechanism for the warming of the Arctic that is discussed. Changes between the 20th and 21st centuries in the northern polar region show the net ocean surface radiation flux in summer increases ~18W m−2 (24%). For the southern polar region the response is different as there is a decrease in surface solar radiation. We suggest that this is caused by changes in cloudiness associated with the poleward migration of the storm tracks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of a larger experiment, atmospheric turbidity measurements were carried out during the austral summer 1985/86 in Adelie Land, Eastern Antarctica at 1560 m elevation. A comparison of our measurements of the solar beam with those of other areas in the Arctic and Antarctic was carried out. Our values were higher than all measurements from the Arctic. For Antarctica, Plateau and Mizuho Stations, both higher in altitude, had somewhat higher values, while the value of the coastal stations were lower. We calculated also turbidity indexes such as Unke's turbidity factor T and Angstrom's turbidity coefficient ß. Mean values of T were around 2.0, which are low values indeed. Beta values were around 0.04, a rather typical value for polar regions. No trend in turbidity could be observed for the time of observation. Further, it could be shown that the decrease in intensity with increasing optical air mass was less pronounced for larger wavelengths than for shorter ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive alien species are among the primary causes of biodiversity change globally, with the risks thereof broadly understood for most regions of the world. They are similarly thought to be among the most significant conservation threats to Antarctica, especially as climate change proceeds in the region. However, no comprehensive, continent-wide evaluation of the risks to Antarctica posed by such species has been undertaken. Here we do so by sampling, identifying, and mapping the vascular plant propagules carried by all categories of visitors to Antarctica during the International Polar Year's first season (2007-2008) and assessing propagule establishment likelihood based on their identity and origins and on spatial variation in Antarctica's climate. For an evaluation of the situation in 2100, we use modeled climates based on the Intergovernmental Panel on Climate Change's Special Report on Emissions Scenarios Scenario A1B [Nakicenovic N, Swart R, eds (2000) Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK)]. Visitors carrying seeds average 9.5 seeds per person, although as vectors, scientists carry greater propagule loads than tourists. Annual tourist numbers (~33,054) are higher than those of scientists (~7,085), thus tempering these differences in propagule load. Alien species establishment is currently most likely for the Western Antarctic Peninsula. Recent founder populations of several alien species in this area corroborate these findings. With climate change, risks will grow in the Antarctic Peninsula, Ross Sea, and East Antarctic coastal regions. Our evidence-based assessment demonstrates which parts of Antarctica are at growing risk from alien species that may become invasive and provides the means to mitigate this threat now and into the future as the continent's climate changes.