996 resultados para Poisson Process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, three single-control charts are proposed to monitor individual observations of a bivariate Poisson process. The specified false-alarm risk, their control limits, and ARLs were determined to compare their performances for different types and sizes of shifts. In most of the cases, the single charts presented better performance rather than two separate control charts ( one for each quality characteristic). A numerical example illustrates the proposed control charts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, three single-control charts are proposed to monitor individual observations of a bivariate Poisson process. The specified false-alarm risk, their control limits, and ARLs were determined to compare their performances for different types and sizes of shifts. In most of the cases, the single charts presented better performance rather than two separate control charts ( one for each quality characteristic). A numerical example illustrates the proposed control charts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a multistable subordinator, which generalizes the stable subordinator to the case of time-varying stability index. This enables us to define a multifractional Poisson process. We study properties of these processes and establish the convergence of a continuous-time random walk to the multifractional Poisson process.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 60E05, 62P05.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the Hammersley-Aldous-Diaconis process, infinitely many particles sit in R and at most one particle is allowed at each position. A particle at x, whose nearest neighbor to the right is at y, jumps at rate y - x to a position uniformly distributed in the interval (x, y). The basic coupling between trajectories with different initial configuration induces a process with different classes of particles. We show that the invariant measures for the two-class process can be obtained as follows. First, a stationary M/M/1 queue is constructed as a function of two homogeneous Poisson processes, the arrivals with rate, and the (attempted) services with rate rho > lambda Then put first class particles at the instants of departures (effective services) and second class particles at the instants of unused services. The procedure is generalized for the n-class case by using n - 1 queues in tandem with n - 1 priority types of customers. A multi-line process is introduced; it consists of a coupling (different from Liggett's basic coupling), having as invariant measure the product of Poisson processes. The definition of the multi-line process involves the dual points of the space-time Poisson process used in the graphical construction of the reversed process. The coupled process is a transformation of the multi-line process and its invariant measure is the transformation described above of the product measure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Motor unit action potentials (MUAPs) evoked by repetitive, low-intensity transcranial magnetic stimulation can be modeled as a Poisson process. A mathematical consequence of such a model is that the ratio of the variance to the mean of the amplitudes of motor evoked potentials (MEPs) should provide an estimate of the mean size of the individual MUAPs that summate to generate each MEP. We found that this is, in fact, the case. Our finding thus supports the use of the Poisson distribution to model MEP generation and indicates that this model enables characterization of the motor unit population that contributes to near-threshold MEPs. Muscle Nerve 42: 825-828, 2010

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A kinetic model is derived to study the successive movements of particles, described by a Poisson process, as well as their generation. The irreversible thermodynamics of this system is also studied from the kinetic model. This makes it possible to evaluate the differences between thermodynamical quantities computed exactly and up to second-order. Such differences determine the range of validity of the second-order approximation to extended irreversible thermodynamics

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the framework of the classical compound Poisson process in collective risk theory, we study a modification of the horizontal dividend barrier strategy by introducing random observation times at which dividends can be paid and ruin can be observed. This model contains both the continuous-time and the discrete-time risk model as a limit and represents a certain type of bridge between them which still enables the explicit calculation of moments of total discounted dividend payments until ruin. Numerical illustrations for several sets of parameters are given and the effect of random observation times on the performance of the dividend strategy is studied.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

En este documento se revisa teóricamente la distribución de probabilidad de Poisson como función que asigna a cada suceso definido, sobre una variable aleatoria discreta, la probabilidad de ocurrencia en un intervalo de tiempo o región del espacio disjunto. Adicionalmente se revisa la distribución exponencial negativa empleada para modelar el intervalo de tiempo entre eventos consecutivos de Poisson que ocurren de manera independiente; es decir, en los cuales la probabilidad de ocurrencia de los eventos sucedidos en un intervalo de tiempo no depende de los ocurridos en otros intervalos de tiempo, por esta razón se afirma que es una distribución que no tiene memoria. El proceso de Poisson relaciona la función de Poisson, que representa un conjunto de eventos independientes sucedidos en un intervalo de tiempo o región del espacio con los tiempos dados entre la ocurrencia de los eventos según la distribución exponencial negativa. Los anteriores conceptos se usan en la teoría de colas, rama de la investigación de operaciones que describe y brinda soluciones a situaciones en las que un conjunto de individuos o elementos forman colas en espera de que se les preste un servicio, por lo cual se presentan ejemplos de aplicación en el ámbito médico.