880 resultados para Point-of-Care Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Measurement of HbA1c is the most important parameter to assess glycemic control in diabetic patients. Different point-of-care devices for HbA1c are available. The aim of this study was to evaluate two point-of-care testing (POCT) analyzers (DCA Vantage from Siemens and Afinion from Axis-Shield). We studied the bias and precision as well as interference from carbamylated hemoglobin. METHODS Bias of the POCT analyzers was obtained by measuring 53 blood samples from diabetic patients with a wide range of HbA1c, 4%-14% (20-130 mmol/mol), and comparing the results with those obtained by the laboratory method: HPLC HA 8160 Menarini. Precision was performed by 20 successive determinations of two samples with low 4.2% (22 mmol/mol) and high 9.5% (80 mmol/mol) HbA1c values. The possible interference from carbamylated hemoglobin was studied using 25 samples from patients with chronic renal failure. RESULTS The means of the differences between measurements performed by each POCT analyzer and the laboratory method (95% confidence interval) were: 0.28% (p<0.005) (0.10-0.44) for DCA and 0.27% (p<0.001) (0.19-0.35) for Afinion. Correlation coefficients were: r=0.973 for DCA, and r=0.991 for Afinion. The mean bias observed by using samples from chronic renal failure patients were 0.2 (range -0.4, 0.4) for DCA and 0.2 (-0.2, 0.5) for Afinion. Imprecision results were: CV=3.1% (high HbA1c) and 2.97% (low HbA1c) for DCA, CV=1.95% (high HbA1c) and 2.66% (low HbA1c) for Afinion. CONCLUSIONS Both POCT analyzers for HbA1c show good correlation with the laboratory method and acceptable precision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les POCT (point of care tests) ont un grand potentiel d'utilisation en médecine infectieuse ambulatoire grâce à leur rapidité d'exécution, leur impact sur l'administration d'antibiotiques et sur le diagnostic de certaines maladies transmissibles. Certains tests sont utilisés depuis plusieurs années (détection de Streptococcus pyogenes lors d'angine, anticorps anti-VIH, antigène urinaire de S. pneumoniae, antigène de Plasmodium falciparum). De nouvelles indications concernent les infections respiratoires, les diarrhées infantiles (rotavirus, E. coli entérohémorragique) et les infections sexuellement transmissibles. Des POCT, basés sur la détection d'acides nucléiques, viennent d'être introduits (streptocoque du groupe B chez la femme enceinte avant l'accouchement et la détection du portage de staphylocoque doré résistant à la méticilline). POCT have a great potential in ambulatory infectious diseases diagnosis, due to their impact on antibiotic administration and on communicable diseases prevention. Some are in use for long (S. pyogenes antigen, HIV antibodies) or short time (S. pneumoniae antigen, P. falciparum). The additional major indications will be community-acquired lower respiratory tract infections, infectious diarrhoea in children (rotavirus, enterotoxigenic E. coli), and hopefully sexually transmitted infections. Easy to use, these tests based on antigen-antibody reaction allow a rapid diagnosis in less than one hour; the new generation of POCT relying on nucleic acid detection are just introduced in practice (detection of GBS in pregnant women, carriage of MRSA), and will be extended to many pathogens

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The full blood cell (FBC) count is the most common indicator of diseases. At present hematology analyzers are used for the blood cell characterization, but, recently, there has been interest in using techniques that take advantage of microscale devices and intrinsic properties of cells for increased automation and decreased cost. Microfluidic technologies offer solutions to handling and processing small volumes of blood (2-50 uL taken by finger prick) for point-of-care(PoC) applications. Several PoC blood analyzers are in use and may have applications in the fields of telemedicine, out patient monitoring and medical care in resource limited settings. They have the advantage to be easy to move and much cheaper than traditional analyzers, which require bulky instruments and consume large amount of reagents. The development of miniaturized point-of-care diagnostic tests may be enabled by chip-based technologies for cell separation and sorting. Many current diagnostic tests depend on fractionated blood components: plasma, red blood cells (RBCs), white blood cells (WBCs), and platelets. Specifically, white blood cell differentiation and counting provide valuable information for diagnostic purposes. For example, a low number of WBCs, called leukopenia, may be an indicator of bone marrow deficiency or failure, collagen- vascular diseases, disease of the liver or spleen. The leukocytosis, a high number of WBCs, may be due to anemia, infectious diseases, leukemia or tissue damage. In the laboratory of hybrid biodevices, at the University of Southampton,it was developed a functioning micro impedance cytometer technology for WBC differentiation and counting. It is capable to classify cells and particles on the base of their dielectric properties, in addition to their size, without the need of labeling, in a flow format similar to that of a traditional flow cytometer. It was demonstrated that the micro impedance cytometer system can detect and differentiate monocytes, neutrophils and lymphocytes, which are the three major human leukocyte populations. The simplicity and portability of the microfluidic impedance chip offer a range of potential applications in cell analysis including point-of-care diagnostic systems. The microfluidic device has been integrated into a sample preparation cartridge that semi-automatically performs erythrocyte lysis before leukocyte analysis. Generally erythrocytes are manually lysed according to a specific chemical lysis protocol, but this process has been automated in the cartridge. In this research work the chemical lysis protocol, defined in the patent US 5155044 A, was optimized in order to improve white blood cell differentiation and count performed by the integrated cartridge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that the early initiation of a specific antiinfective therapy is crucial to reduce the mortality in severe infection. Procedures culturing pathogens are the diagnostic gold standard in such diseases. However, these methods yield results earliest between 24 to 48 hours. Therefore, severe infections such as sepsis need to be treated with an empirical antimicrobial therapy, which is ineffective in an unknown fraction of these patients. Today's microbiological point of care tests are pathogen specific and therefore not appropriate for an infection with a variety of possible pathogens. Molecular nucleic acid diagnostics such as polymerase chain reaction (PCR) allow the identification of pathogens and resistances. These methods are used routinely to speed up the analysis of positive blood cultures. The newest PCR based system allows the identification of the 25 most frequent sepsis pathogens by PCR in parallel without previous culture in less than 6 hours. Thereby, these systems might shorten the time of possibly insufficient antiinfective therapy. However, these extensive tools are not suitable as point of care diagnostics. Miniaturization and automating of the nucleic acid based method is pending, as well as an increase of detectable pathogens and resistance genes by these methods. It is assumed that molecular PCR techniques will have an increasing impact on microbiological diagnostics in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Internet has created new opportunities for librarians to develop information systems that are readily accessible at the point of care. This paper describes the multiyear process used to justify, fund, design, develop, promote, and evaluate a rehabilitation prototype of a point-of-care, team-based information system (PoinTIS) and train health care providers to use this prototype for their spinal cord injury and traumatic brain injury patient care and education activities. PoinTIS is a successful model for librarians in the twenty-first century to serve as publishers of information created or used by their parent organizations and to respond to the opportunities for information dissemination provided by recent technological advances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A significant body of research investigates the acceptance of computer-based support (including devices and applications ranging from e-mail to specialized clinical systems, like PACS) among clinicians. Much of this research has focused on measuring the usability of systems using characteristics related to the clarity of interactions and ease of use. We propose that an important attribute of any clinical computer-based support tool is the intrinsic motivation of the end-user (i.e. a clinician) to use the system in practice. In this paper we present the results of a study that investigated factors motivating medical doctors (MDs) to use computer-based support. Our results demonstrate that MDs value computer-based support, find it useful and easy to use, however, uptake is hindered by perceived incompetence, and pressure and tension associated with using technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present dissertation aimed to develop a new microfluidic system for a point-of-care hematocrit device. Stabilization of microfluidic systems via surfactant additives and integration of semipermeable SnakeSkin® membranes was investigated. Both methods stabilized the microfluidic systems by controlling electrolysis bubbles. Surfactant additives, Triton X-100 and SDS stabilized promoted faster bubble detachment at electrode surfaces by lowering surface tension and decreased gas bubble formation by increasing gas solubility. The SnakeSkin® membranes blocked bubbles from entering the microchannel and thus less disturbance to the electric field by bubbles occurred in the microchannel. Platinum electrode performance was improved by carbonizing electrode surface using red blood cells. Irreversibly adsorbed RBCs lysed on platinum electrode surfaces and formed porous carbon layers while current response measurements. The formed carbon layers increase the platinum electrode surface area and thus electrode performance was improved by 140 %. The microfluidic system was simplified by employing DC field to use as a platform for a point-of-care hematocrit device. Feasibility of the microfluidic system for hematocrit determination was shown via current response measurements of red blood cell suspensions in phosphate buffered saline and plasma media. The linear trendline of current responses over red blood cell concentration was obtained in both phosphate buffered saline and plasma media. This research suggested that a new and simple microfluidic system could be a promising solution to develop an inexpensive and reliable point-of-care hematocrit device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1st ASPIC International Congress

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes a novel use for the polymeric film, poly(o-aminophenol) (PAP) that was made responsive to a specific protein. This was achieved through templated electropolymerization of aminophenol (AP) in the presence of protein. The procedure involved adsorbing protein on the electrode surface and thereafter electroploymerizing the aminophenol. Proteins embedded at the outer surface of the polymeric film were digested by proteinase K and then washed away thereby creating vacant sites. The capacity of the template film to specifically rebind protein was tested with myoglobin (Myo), a cardiac biomarker for ischemia. The films acted as biomimetic artificial antibodies and were produced on a gold (Au) screen printed electrode (SPE), as a step towards disposable sensors to enable point-of-care applications. Raman spectroscopy was used to follow the surface modification of the Au-SPE. The ability of the material to rebind Myo was measured by electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The devices displayed linear responses to Myo in EIS and SWV assays down to 4.0 and 3.5 μg/mL, respectively, with detection limits of 1.5 and 0.8 μg/mL. Good selectivity was observed in the presence of troponin T (TnT) and creatine kinase (CKMB) in SWV assays, and accurate results were obtained in applications to spiked serum. The sensor described in this work is a potential tool for screening Myo in point-of-care due to the simplicity of fabrication, disposability, short time response, low cost, good sensitivity and selectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A gold screen printed electrode (Au-SPE) was modified by merging Molecular Imprinting and Self-Assembly Monolayer techniques for fast screening cardiac biomarkers in point-of-care (POC). For this purpose, Myoglobin (Myo) was selected as target analyte and its plastic antibody imprinted over a glutaraldehyde (Glu)/cysteamine (Cys) layer on the gold-surface. The imprinting effect was produced by growing a reticulated polymer of acrylamide (AAM) and N,N′-methylenebisacrylamide (NNMBA) around the Myo template, covalently attached to the biosensing surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) studies were carried out in all chemical modification steps to confirm the surface changes in the Au-SPE. The analytical features of the resulting biosensor were studied by different electrochemical techniques, including EIS, square wave voltammetry (SWV) and potentiometry. The limits of detection ranged from 0.13 to 8 μg/mL. Only potentiometry assays showed limits of detection including the cut-off Myo levels. Quantitative information was also produced for Myo concentrations ≥0.2 μg/mL. The linear response of the biosensing device showed an anionic slope of ~70 mV per decade molar concentration up to 0.3 μg/mL. The interference of coexisting species was tested and good selectivity was observed. The biosensor was successfully applied to biological fluids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For many drugs, finding the balance between efficacy and toxicity requires monitoring their concentrations in the patient's blood. Quantifying drug levels at the bedside or at home would have advantages in terms of therapeutic outcome and convenience, but current techniques require the setting of a diagnostic laboratory. We have developed semisynthetic bioluminescent sensors that permit precise measurements of drug concentrations in patient samples by spotting minimal volumes on paper and recording the signal using a simple point-and-shoot camera. Our sensors have a modular design consisting of a protein-based and a synthetic part and can be engineered to selectively recognize a wide range of drugs, including immunosuppressants, antiepileptics, anticancer agents and antiarrhythmics. This low-cost point-of-care method could make therapies safer, increase the convenience of doctors and patients and make therapeutic drug monitoring available in regions with poor infrastructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Point-of-care (POC) tests offer potentially substantial benefits for the management of infectious diseases, mainly by shortening the time to result and by making the test available at the bedside or at remote care centres. Commercial POC tests are already widely available for the diagnosis of bacterial and viral infections and for parasitic diseases, including malaria. Infectious diseases specialists and clinical microbiologists should be aware of the indications and limitations of each rapid test, so that they can use them appropriately and correctly interpret their results. The clinical applications and performance of the most relevant and commonly used POC tests are reviewed. Some of these tests exhibit insufficient sensitivity, and should therefore be coupled to confirmatory tests when the results are negative (e.g. Streptococcus pyogenes rapid antigen detection test), whereas the results of others need to be confirmed when positive (e.g. malaria). New molecular-based tests exhibit better sensitivity and specificity than former immunochromatographic assays (e.g. Streptococcus agalactiae detection). In the coming years, further evolution of POC tests may lead to new diagnostic approaches, such as panel testing, targeting not just a single pathogen, but all possible agents suspected in a specific clinical setting. To reach this goal, the development of serology-based and/or molecular-based microarrays/multiplexed tests will be needed. The availability of modern technology and new microfluidic devices will provide clinical microbiologists with the opportunity to be back at the bedside, proposing a large variety of POC tests that will allow quicker diagnosis and improved patient care.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoglycemia, if recurrent, may have severe consequences on cognitive and psychomotor development of neonates. Therefore, screening for hypoglycemia is a daily routine in every facility taking care of newborn infants. Point-of-care-testing (POCT) devices are interesting for neonatal use, as their handling is easy, measurements can be performed at bedside, demanded blood volume is small and results are readily available. However, such whole blood measurements are challenged by a wide variation of hematocrit in neonates and a spectrum of normal glucose concentration at the lower end of the test range. We conducted a prospective trial to check precision and accuracy of the best suitable POCT device for neonatal use from three leading companies in Europe. Of the three devices tested (Precision Xceed, Abbott; Elite XL, Bayer; Aviva Nano, Roche), Aviva Nano exhibited the best precision. None completely fulfilled the ISO-accuracy-criteria 15197: 2003 or 2011. Aviva Nano fulfilled these criteria in 92% of cases while the others were <87%. Precision Xceed reached the 95% limit of the 2003 ISO-criteria for values ≤4.2 mmol/L, but not for the higher range (71%). Although validated for adults, new POCT devices need to be specifically evaluated on newborn infants before adopting their routine use in neonatology.