942 resultados para Plymouth Rock chicken


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[From Jasper Cropsey Sketch book, 1855-1856]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vol. 27, no. 8 never published.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I. Introducción El problema avicola nacional II. Presentación III. Descripción de las razas usadas en el experimento, Raza Leghorn, comportamiento en la zona del pacífico de Nicaragua, Raza Minorca o Monarca, Comportamiento en la zona del pacífico, Raza New Hompshire, Comportamiento en la zona del pacífico, Raza Plymouth Rock barrada, Comportamiento en la zona del pacífico, Raza Chiricana criolla. IV. Herencia del color de las plumas Blanco dominante, negro, blanco recesivo, rojo, barrado, abarramiento dorado, cuello, cresta y postura Cuello Cresta Postura VI. Conclusiones VII. Recomendaciones Bibliografía

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The letter describes Eleanore Celeste's time away with her brother. She has spent her time canoeing, playing golf, dancing and plans to attend the movies. The next day is a sailing trip to see Plymouth Rock. The next week she will be in Connecticut and then home.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ceased publication June 1927.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Species' distribution modelling relies on adequate data sets to build reliable statistical models with high predictive ability. However, the money spent collecting empirical data might be better spent on management. A less expensive source of species' distribution information is expert opinion. This study evaluates expert knowledge and its source. In particular, we determine whether models built on expert knowledge apply over multiple regions or only within the region where the knowledge was derived. 2. The case study focuses on the distribution of the brush-tailed rock-wallaby Petrogale penicillata in eastern Australia. We brought together from two biogeographically different regions substantial and well-designed field data and knowledge from nine experts. We used a novel elicitation tool within a geographical information system to systematically collect expert opinions. The tool utilized an indirect approach to elicitation, asking experts simpler questions about observable rather than abstract quantities, with measures in place to identify uncertainty and offer feedback. Bayesian analysis was used to combine field data and expert knowledge in each region to determine: (i) how expert opinion affected models based on field data and (ii) how similar expert-informed models were within regions and across regions. 3. The elicitation tool effectively captured the experts' opinions and their uncertainties. Experts were comfortable with the map-based elicitation approach used, especially with graphical feedback. Experts tended to predict lower values of species occurrence compared with field data. 4. Across experts, consensus on effect sizes occurred for several habitat variables. Expert opinion generally influenced predictions from field data. However, south-east Queensland and north-east New South Wales experts had different opinions on the influence of elevation and geology, with these differences attributable to geological differences between these regions. 5. Synthesis and applications. When formulated as priors in Bayesian analysis, expert opinion is useful for modifying or strengthening patterns exhibited by empirical data sets that are limited in size or scope. Nevertheless, the ability of an expert to extrapolate beyond their region of knowledge may be poor. Hence there is significant merit in obtaining information from local experts when compiling species' distribution models across several regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the ecologically relevant spatial scales for predicting species occurrences is an important concept when determining species–environment relationships. Therefore species distribution modelling should consider all ecologically relevant spatial scales. While several recent studies have addressed this problem in artificially fragmented landscapes, few studies have researched relevant ecological scales for organisms that also live in naturally fragmented landscapes. This situation is exemplified by the Australian rock-wallabies’ preference for rugged terrain and we addressed the issue of scale using the threatened brush-tailed rock-wallaby (Petrogale penicillata) in eastern Australia. We surveyed for brush-tailed rock-wallabies at 200 sites in southeast Queensland, collecting potentially influential site level and landscape level variables. We applied classification trees at either scale to capture a hierarchy of relationships between the explanatory variables and brush-tailed rock-wallaby presence/absence. Habitat complexity at the site level and geology at the landscape level were the best predictors of where we observed brush-tailed rock-wallabies. Our study showed that the distribution of the species is affected by both site scale and landscape scale factors, reinforcing the need for a multi-scale approach to understanding the relationship between a species and its environment. We demonstrate that careful design of data collection, using coarse scale spatial datasets and finer scale field data, can provide useful information for identifying the ecologically relevant scales for studying species–environment relationships. Our study highlights the need to determine patterns of environmental influence at multiple scales to conserve specialist species such as the brush-tailed rock-wallaby in naturally fragmented landscapes.