442 resultados para Plumage Coloration
Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.
Resumo:
BACKGROUND: The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. RESULTS: We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. CONCLUSIONS: We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.
Resumo:
Carotenoid-based yellowish to red plumage colors are widespread visual signals used in sexual and social communication. To understand their ultimate signaling functions, it is important to identify the proximate mechanism promoting variation in coloration. Carotenoid-based colors combine structural and pigmentary components, but the importance of the contribution of structural components to variation in pigment-based colors (i.e., carotenoid-based colors) has been undervalued. In a field experiment with great tits (Parus major), we combined a brood size manipulation with a simultaneous carotenoid supplementation in order to disentangle the effects of carotenoid availability and early growth condition on different components of the yellow breast feathers. By defining independent measures of feather carotenoid content (absolute carotenoid chroma) and background structure (background reflectance), we demonstrate that environmental factors experienced during the nestling period, namely, early growth conditions and carotenoid availability, contribute independently to variation in yellow plumage coloration. While early growth conditions affected the background reflectance of the plumage, the availability of carotenoids affected the absolute carotenoid chroma, the peak of maximum ultraviolet reflectance, and the overall shape, that is, chromatic information of the reflectance curves. These findings demonstrate that environment-induced variation in background structure contributes significantly to intraspecific variation in yellow carotenoid-based plumage coloration.
Resumo:
Birds show striking interspecific variation in their use of carotenoid-based coloration. Theory predicts that the use of carotenoids for coloration is closely associated with the availability of carotenoids in the diet but, although this prediction has been supported in single-species studies and those using small numbers of closely related species, there have been no broad-scale quantitative tests of the link between carotenoid coloration and diet. Here we test for such a link using modern comparative methods, a database on 140 families of birds and two alternative avian phylogenies. We show that carotenoid pigmentation is more common in the bare parts (legs, bill and skin) than in plumage, and that yellow coloration is more common than red. We also show that there is no simple, general association between the availability of carotenoids in the diet and the overall use of carotenoid-based coloration. However, when we look at plumage coloration separately from bare part coloration, we find there is a robust and significant association between diet and plumage coloration, but not between diet and bare part coloration. Similarly, when we look at yellow and red plumage colours separately, we find that the association between diet and coloration is typically stronger for red coloration than it is for yellow coloration. Finally, when we build multivariate models to explain variation in each type of carotenoid-based coloration we find that a variety of life history and ecological factors are associated with different aspects of coloration, with dietary carotenoids only being a consistent significant factor in the case of variation in plumage. All of these results remain qualitatively unchanged irrespective of the phylogeny used in the analyses, although in some cases the precise life history and ecological variables included in the multivariate models do vary. Taken together, these results indicate that the predicted link between carotenoid coloration and diet is idiosyncratic rather than general, being strongest with respect to plumage colours and weakest for bare part coloration. We therefore suggest that, although the carotenoid-based bird plumage may a good model for diet-mediated signalling, the use of carotenoids in bare part pigmentation may have a very different functional basis and may be more strongly influenced by genetic and physiological mechanisms, which currently remain relatively understudied.
Resumo:
Oxidative stress, determined by the balance between the production of damaging reactive oxygen species (ROS) and antioxidant defences, is hypothesized to play an important role in shaping the cost of reproduction and life history trade-offs. To test this hypothesis, we manipulated reproductive effort in 94 breeding pairs of tawny owls (Strix aluco) to investigate the sex- and melanism-specific effects on markers of oxidative stress in red blood cells (RBCs). This colour polymorphic bird species shows sex-specific division of labour and melanism-specific history strategies. Brood sizes at hatching were experimentally enlarged or reduced to increase or decrease reproductive effort, respectively. We obtained an integrative measure of the oxidative balance by measuring ROS production by RBCs, intracellular antioxidant glutathione levels and membrane resistance to ROS. We found that light melanic males (the sex undertaking offspring food provisioning) produced more ROS than darker conspecifics, but only when rearing an enlarged brood. In both sexes, light melanic individuals had also a larger pool of intracellular antioxidant glutathione than darker owls under relaxed reproductive conditions (i.e. reduced brood), but not when investing substantial effort in current reproduction (enlarged brood). Finally, resistance to oxidative stress was differently affected by the brood size manipulation experiment in males and females independently of their plumage coloration. Altogether, our results support the hypothesis that reproductive effort can alter the oxidative balance in a sex- and colour-specific way. This further emphasizes the close link between melanin-based coloration and life history strategies.
Resumo:
Indirect and direct models of sexual selection make different predictions regarding the quantitative genetic relationships between sexual ornaments and fitness. Indirect models predict that ornaments should have a high heritability and that strong positive genetic covariance should exist between fitness and the ornament. Direct models, on the other hand, make no such assumptions about the level of genetic variance in fitness and the ornament, and are therefore likely to be more important when environmental sources of variation are large. Here we test these predictions in a wild population of the blue tit (Parus caeruleus), a species in which plumage coloration has been shown to be under sexual selection. Using 3 years of cross-fostering data from over 250 breeding attempts, we partition the covariance between parental coloration and aspects of nestling fitness into a genetic and environmental component. Contrary to indirect models of sexual selection, but in agreement with direct models, we show that variation in coloration is only weakly heritable (h(2) < 0.11), and that two components of offspring fitness-nestling size and fledgling recruitment-are strongly dependent on parental effects, rather than genetic effects. Furthermore, there was no evidence of significant positive genetic covariation between parental colour and offspring traits. Contrary to direct benefit models, however, we find little evidence that variation in colour reliably indicates the level of parental care provided by either males or females. Taken together, these results indicate that the assumptions of indirect models of sexual selection are not supported by the genetic basis of the traits reported on here.
Resumo:
Trade-offs between the benefits of current reproduction and the costs to future reproduction and survival are widely recognized. However, such trade-offs might only be detected when resources become limited to the point where investment in one activity jeopardizes investment in others. The resolution of the trade-off between reproduction and self-maintenance is mediated by hormones such as glucocorticoids which direct behaviour and physiology towards self-maintenance under stressful situations. We investigated this trade-off in male and female barn owls in relation to the degree of heritable melanin-based coloration, a trait that reflects the ability to cope with various sources of stress in nestlings. We increased circulating corticosterone in breeding adults by implanting a corticosterone-releasing-pellet, using birds implanted with a placebo-pellet as controls. In males, elevated corticosterone reduced the activity (i.e. reduced home-range size and distance covered within the home-range) independently of coloration, while we could not detect any effect on hunting efficiency. The effect of experimentally elevated corticosterone on female behaviour was correlated with their melanin-based coloration. Corticosterone (cort-) induced an increase in brooding behaviour in small-spotted females, while this hormone had no detectable effect in large-spotted females. Cort-females with small eumelanic spots showed the normal body-mass loss during the early nestling period, while large spotted cort-females did not lose body mass. This indicates that corticosterone induced a shift towards self-maintenance in males independently on their plumage, whereas in females this shift was observed only in large-spotted females.
Resumo:
Theory suggests that carotenoid-based signals are used in animal communication because they contain specific information about parasite resistance or immunocompetence. This implies that honesty of carotenoid-based signals is maintained by a trade-off between pigmentation and immune function for carotenoids, assuming that the carotenoids used for coloration are also immunoenhancing. We tested this hypothesis by altering the diets of nestling great tits (Paris major) with supplementary beadlets containing the carotenoids that are naturally ingested with food or beadlets containing the carotenoids that are incorporated into the feathers; a control group received beadlets containing no carotenoids. We simultaneously immune challenged half of the nestlings of each supplementation group, using a two-factorial design. Activatior of the immune system led to reduced color expression. However, only nestlings fed with the naturally ingested carotenoids and not with the carotenoids deposited in the feathers showed an increased cellular immune response. This shows that the carotenoids used for ornamentation do not promote the immune function, which conflicts with the trade-off hypothesis. Our results indicate that honesty of carotenoid-based signals is maintained by an individual's physiological limitation to absorb and/or transport carotenoids and by access to carotenoids, indicating that preferences for carotenoid-based traits in sexual selection or parent-offspring interactions select for competitive individuals, rather than specifically for immune function.
Resumo:
There is a continuous quest for developing electrochromic (EC)transition metal oxides (TMOs) with increased coloration efficiency. As emerging TMOs, Nb2O5 films, even those of ordered anodized nanochannels, have failed to produce the required EC performance for practical applications. This is attributed to limitations presented by its relatively wide bandgap and low capacity for accommodating ions. To overcome such issues, MoO3 was electrodeposited onto Nb2O5 nanochannelled films as homogeneously conformal and stratified α-MoO3 coatings of different thickness. The EC performance of the resultant MoO3 coated Nb2O5 binary system was evaluated. The system exhibited a coloration efficiency of 149.0 cm2 C−1, exceeding that of any previous reports on MoO3 and Nb2O5 individually or their compounds. The enhancement was ascribed to a combination of the reduced effective bandgap of the binary system, the increased intercalation probability from the layered α-MoO3 coating, and a high surface-tovolume ratio, while the Nb2O5 nanochannelled templates provided stability and low impurity pathways for charge transfer to occur.
Resumo:
Coloration in polyacrylonitrile can be induced in three distinct ways: by heat treatment, by treatment with base, or during synthesis of the polymer itself using ionic initiators at relatively higher temperatures. The present investigation employing 'H and NMR spectroscopy has revealed some common features in colored polyacrylonitrile irrespective of ita mode of coloration. All colored polyacrylonitriles give an additional peak around S 2.7 in 'H NMR spectra and, except for heat-treated polyacrylonitrile, one extra group of peaks in the region 8 12-16 in 13C NMR spectra. The former peak has been attributed to methine and/or methylene protons in branched and/or cyclized structures, while the latter peak has been attributed to methylene carbon atoms in the branched structure. Colorless polyacrylonitriles have been found to be predominantly heterotactic, while colored polyacrylonitriles have been found to have appreciable isotactic contribution.
Resumo:
Ornament expression fluctuates with age in many organisms. Whether these changes are adaptively plastic is poorly known. In order to understand the ultimate function of melanin-based ornaments, we studied their within-individual fluctuations and their covariation with fitness-related traits. In barn owls (Tyto alba), individuals vary from reddish-brown pheomelanic to white and from immaculate to marked with black eumelanic spots, males being less reddish and less spotted than females. During the first molt, both sexes became less pheomelanic, females displayed larger spots and males fewer spots, but the extent of these changes was not associated with reproduction. At subsequent molts, intra-individual changes in melanin-based traits covaried with simultaneous reproduction changes. Adult females bred earlier in the season and laid larger eggs when they became scattered with larger spots, while adults of both sexes produced larger broods when they became whiter. These results suggest that the production of melanin pigments and fitness-related life history traits are concomitantly regulated in a sex-specific way.
Resumo:
The hypothesis that extravagant ornaments signal parasite resistance has received support in several species for ornamented males but more rarely for ornamented females. However, recent theories have proposed that females should often be under sexual selection, and therefore females may signal the heritable capacity to resist parasites. We investigated this hypothesis in the socially monogamous barn owl, Tyto alba, in which females exhibit on average more and larger black spots on the plumage than males, and in which males were suggested to choose a mate with respect to female plumage spottiness. We hypothesized that the proportion of the plumage surface covered by black spots signals parasite resistance. In line with this hypothesis, we found that the ectoparasitic fly, Carnus hemapterus, was less abundant on young raised by more heavily spotted females and those flies were less fecund. In an experiment, where entire clutches were cross-fostered between nests, we found that the fecundity of the flies collected on nestlings was negatively correlated with the genetic mother's plumage spottiness. These results suggest that the ability to resist parasites covaries with the extent of female plumage spottiness. Among females collected dead along roads, those with a lot of black spots had a small bursa of Fabricius. Given that parasites bigger the development of this immune organ, this observation further suggests that more spotted females are usually less parasitized. The same analyses performed on male plumage spottiness all provided non-significant results. To our knowledge, this study is the first one showing that a heritable secondary sexual characteristics displayed by females reflects parasite resistance.