970 resultados para Player motion recognition
Resumo:
This paper presents a semi-parametric Algorithm for parsing football video structures. The approach works on a two interleaved based process that closely collaborate towards a common goal. The core part of the proposed method focus perform a fast automatic football video annotation by looking at the enhance entropy variance within a series of shot frames. The entropy is extracted on the Hue parameter from the HSV color system, not as a global feature but in spatial domain to identify regions within a shot that will characterize a certain activity within the shot period. The second part of the algorithm works towards the identification of dominant color regions that could represent players and playfield for further activity recognition. Experimental Results shows that the proposed football video segmentation algorithm performs with high accuracy.
Resumo:
The growing demand for physical rehabilitation processes can result in the rising of costs and waiting lists, becoming a threat to healthcare services’ sustainability. Telerehabilitation solutions can help in this issue by discharging patients from points of care while improving their adherence to treatment. Sensing devices are used to collect data so that the physiotherapists can monitor and evaluate the patients’ activity in the scheduled sessions. This paper presents a software platform that aims to meet the needs of the rehabilitation experts and the patients along a physical rehabilitation plan, allowing its use in outpatient scenarios. It is meant to be low-cost and easy-to-use, improving patients and experts experience. We show the satisfactory results already obtained from its use, in terms of the accuracy evaluating the exercises, and the degree of users’ acceptance. We conclude that this platform is suitable and technically feasible to carry out rehabilitation plans outside the point of care.
Resumo:
A combined 2D, 3D approach is presented that allows for robust tracking of moving bodies in a given environment as observed via a single, uncalibrated video camera. Tracking is robust even in the presence of occlusions. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that combines low-level (image processing) and mid-level (recursive trajectory estimation) information obtained during the tracking process. The resulting system can segment and maintain the tracking of moving objects before, during, and after occlusion. At each frame, the system also extracts a stabilized coordinate frame of the moving objects. This stabilized frame is used to resize and resample the moving blob so that it can be used as input to motion recognition modules. The approach enables robust tracking without constraining the system to know the shape of the objects being tracked beforehand; although, some assumptions are made about the characteristics of the shape of the objects, and how they evolve with time. Experiments in tracking moving people are described.
Resumo:
A wearable WIMU (Wireless Inertial Measurement Unit) [1] system for sports applications based on Tyndall's 25mm mote technology [2] has been developed to identify tennis performance determining factors, giving coaches & players improved feedback [3, 4]. Multiple WIMUs transmit player motion data to a PC/laptop via a receiver unit. Internally the WIMUs consist of: an IMU layer with MEMS based sensors; a microcontroller/transceiver layer; and an interconnect layer with supplemental 70g accelerometers and a lithium-ion battery. Packaging consists of a robust ABS plastic case with internal padding, a power switch, battery charging port and status LED with Velcro-elastic straps that are used to attach the device to the player. This offers protection from impact, sweat, and movement of sensors which could cause degradation in device performance. In addition, an important requirement for this device is that it needs to be lightweight and comfortable to wear. Calibration ensures that misalignment of the accelerometer and magnetometer axes are accounted for, allowing more accurate measurements to be made.
Resumo:
Pós-graduação em Saúde Coletiva - FMB
Resumo:
[ES] Aplicación para dispositivos móviles Android que, ayudada por acelerómetros y giroscopios, da soporte al desarrollo de actividades físicas que necesiten un plan de trabajo basado en repeticiones y rutinas de ejercicios. El App ayuda a contabilizar las repeticiones de cada ejercicio, informando al usuario mediante sonido, para que este pueda mantener un ritmo continuo. El App permite la realización de ejercicios individuales hasta alcanzar un número objetivo de repeticiones o repeticiones libres; o permite la realización de una serie de ejercicios que forman parte de una rutina de ejercicios. Es posible crear rutinas de ejercicios personalizadas, eliminar rutinas o editar rutinas ya existentes (añadiendo o eliminando ejercicios y repeticiones). El reconocimiento de movimientos para la contabilización de repeticiones se realiza usando el valor absoluto del vector de aceleración generado a partir de los datos del acelerómetro del dispositivo. Este método, aunque no permite la precisión de reconocimiento de movimientos que permitiría el modelado tridimensional de la aceleración lineal del dispositivo, permite un reconocimiento menos computacionalmente costoso, ignorando ciertos factores exteriores y sin la necesidad de entrenamiento previo de la aplicación.
Resumo:
Action recognition plays an important role in various applications, including smart homes and personal assistive robotics. In this paper, we propose an algorithm for recognizing human actions using motion capture action data. Motion capture data provides accurate three dimensional positions of joints which constitute the human skeleton. We model the movement of the skeletal joints temporally in order to classify the action. The skeleton in each frame of an action sequence is represented as a 129 dimensional vector, of which each component is a 31) angle made by each joint with a fixed point on the skeleton. Finally, the video is represented as a histogram over a codebook obtained from all action sequences. Along with this, the temporal variance of the skeletal joints is used as additional feature. The actions are classified using Meta-Cognitive Radial Basis Function Network (McRBFN) and its Projection Based Learning (PBL) algorithm. We achieve over 97% recognition accuracy on the widely used Berkeley Multimodal Human Action Database (MHAD).