864 resultados para Plastic pollution
Resumo:
Grabación realizada por Ciencia compartida (Biblioteca Universitaria)
Resumo:
Marine plastic pollution is rapidly growing and is a source of major concern. Seabirds often ingest plastic debris and are increasingly used as biological monitors of plastic pollution. However, virtually no studies have assessed plastics in seabirds in the deep subtropical North Atlantic. We investigated whether remains of white-faced storm-petrels (WFSP) present in gull pellets could be used for biomonitoring. We analysed 263 pellets and 79.0% of these contained plastic debris originating in the digestive tract of WFSP. Pellets with no bird prey did not contain plastics. Most debris were fragments (83.6%) with fewer plastic pellets (8.2%). Light-coloured plastics predominated (71.0%) and the most frequent polymer was HDPE (73.0%). Stable isotopes in toe-nails of WFSP containing many versus no plastics did not differ, indicating no individual specialisation leading to differential plastic ingestion. We suggest WFSP in pellets are highly suitable to monitor the little known pelagic subtropical Northeast Atlantic.
Resumo:
Plastic debris is now ubiquitous in the marine environment affecting a wide range of taxa, from microscopic zooplankton to large vertebrates. Its persistence and dispersal throughout marine ecosystems has meant that sensitivity toward the scale of threat is growing, particularly for species of conservation concern, such as marine turtles. Their use of a variety of habitats, migratory behaviour, and complex life histories leave them subject to a host of anthropogenic stressors, including exposure to marine plastic pollution. Here, we review the evidence for the effects of plastic debris on turtles and their habitats, highlight knowledge gaps, and make recommendations for future research. We found that, of the seven species, all are known to ingest or become entangled in marine debris. Ingestion can cause intestinal blockage and internal injury, dietary dilution, malnutrition, and increased buoyancy which in turn can result in poor health, reduced growth rates and reproductive output, or death. Entanglement in plastic debris (including ghost fishing gear) is known to cause lacerations, increased drag—which reduces the ability to forage effectively or escape threats—and may lead to drowning or death by starvation. In addition, plastic pollution may impact key turtle habitats. In particular, its presence on nesting beaches may alter nest properties by affecting temperature and sediment permeability. This could influence hatchling sex ratios and reproductive success, resulting in population level implications. Additionally, beach litter may entangle nesting females or emerging hatchlings. Lastly, as an omnipresent and widespread pollutant, plastic debris may cause wider ecosystem effects which result in loss of productivity and implications for trophic interactions. By compiling and presenting this evidence, we demonstrate that urgent action is required to better understand this issue and its effects on marine turtles, so that appropriate and effective mitigation policies can be developed.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Here we report on a potential catalytic process for efficient clean-up of plastic pollution in waters, such as the Great Pacific Garbage Patch (CPGP). Detailed catalytic mechanisms of RuO2 during supercritical water gasification of common polyolefin plastics including low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP) and polystyrene (PP), have been investigated in a batch reactor at 450 °C, 60 min. All four plastics gave very high carbon gasification efficiencies (CGE) and hydrogen gasification efficiencies (HGE). Methane was the highest gas component, with a yield of up to 37 mol kg−1LDPE using the 20 wt% RuO2 catalyst. Evaluation of the gas yields, CGE and HGE revealed that the conversion of PS involved thermal degradation, steam reforming and methanation; whereas hydrogenolysis was a possible additional mechanism during the conversion of aliphatic plastics. The process has the benefits of producing a clean-pressurized methane-rich fuel gas as well as cleaning up hydrocarbons-polluted waters.
Resumo:
Floating plastic debris sampled in surface waters of northwestern Mediterranean Sea during summer 2013. Geographical coordinates and dates of sampling are available in the dataset.
Resumo:
Description of the Work Trashtopia was a fashion exhibition at Craft Queensland’s Artisan gallery showcasing outfits made entirely from rubbish materials. The exhibition was part of an on-going series by the Queensland Fashion Archives, called Remember or Revive. Maison Briz Vegas designers, Carla Binotto and Carla van Lunn created a dystopian beach holiday tableau referencing mid-century Californian and Gold Coast beach culture and style, and today’s plastic pollution of the world’s oceans. The display engaged a popular audience with ideas about environmental destruction and climate change while bringing twentieth and twenty-first century consumer and leisure culture into question. The medium of fashion was used as a means of amusement and provocation. The fashion objects and installation questioned current mores about the material value of rubbish and the installation was also a work of environmental activism. Statement of the Research Component The work was framed by critical reflections of contemporary consumer culture and research fields questioning value in waste materials and fashion objects. The work is situated in the context of conceptual and experimental fashion design practice and fashion presentation. The exhibited work transgressed the conventional production methods and material choice of designer fashion garments, for example, discarded plastic shopping bags were painstakingly shredded to mimic ostrich feathers. The viewer was prompted to reflect on the materiality of rubbish and its potential for transformation. The exhibition also sits in the context of culture jamming and contemporary activist practice. The work references and subverts twentieth century beach holiday culture, contrasting resort wear with a contemporary picture of plastic pollution of the oceans and climate change. Hawaiian style prints contained a playful and dark narrative of dying marine-life and the viewer was invited to take a “Greetings from Trashtopia” postcard depicting fashion models floating in oceans of plastic rubbish. This reflective creative practice sought to address the question of whether fashion made from recycled rubbish materials can critically and emotionally engage viewers with questions about contemporary consumer culture and material value. This work presents an innovative model of fashion design practice in which rubbish materials are transformed into designer garments and rubbish is placed centre stage in the public presentation of the designs. In overturning the traditional model of fashion presentation, the viewer is also given a deeper connection to the recycling process and complex ideas of waste and value. In 2015 two outfits from the exhibition were selected, along with works from three leading Australian fashion labels, and four leading New Zealand labels, for a commemorative ANZAC fashion collection shown at iD Dunedin Fashion Week. The show titled, “Together Alone, revisited” reprised an Australian and New Zealand fashion exhibition first held at the National Gallery of Victoria in 2009.
Resumo:
The diversity and load of heterotrophic bacteria and fungi associated with the mangrove soil from Suva, Fiji Islands, was determined by using the plate count method. The ability of the bacterial isolates to produce various hydrolytic enzymes such as amylase, gelatinase and lipase were determined using the plate assay. The heterotrophic bacterial load was considerably higher than the fungal load. There was a predominance of the gram positive genus, Bacillus. Other genera encountered included Staphylococcus, Micrococcus, Listeria and Vibrio. Their effectiveness on the degradation of commercial polythene carry bags made of high density polyethylene (HDPE) and low density polyethylene (LDPE) was studied over a period of eight weeks in the laboratory. Biodegradation was measured in terms of mean weight loss, which was nearly 5 % after a period of eight weeks. There was a significant increase in the bacterial load of the soil attached to class 2 (HDPE) polythene. After eight weeks of submergence in mangrove soil, soil attached to class 1 and class 3 polythene mostly had Bacillus (Staphylococcus predominated in class 2 polythene). While most of the isolates were capable of producing hydrolytic enzymes such as amylase and gelatinase, lipolytic activity was low. Class 2 HDPE suffered the greatest biodegradation.
Resumo:
The occurrence of plastic objects in the digestive tract was assessed in eight species of Procellariiformes collected in southern Brazil and the occurrence of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in the ingested plastics pellets and plastic fragments was evaluated. PCBs were detected in plastic pellets (491 ng g(-1)) and plastic fragments (243-418 ng g(-1)). Among the OCPs, p,p`-DDE had the highest concentrations, ranging from 68.0 to 99.0 ng g(-1). The occurrence of organic pollutants in post-consumer plastics supports the fact that plastics are an important source carrying persistent organic pollutants in the marine environment. Although transfer through the food chain may be the main source of exposure to POPs to seabirds, plastics could be an additional source for the organisms which ingest them, like Procellariiformes which are the seabirds most affected by plastic pollution. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Due to its environmental, safety, health and socio-economic impacts, marine litter has been recognized as a 21st century global challenge, so that it has been included in Descriptor 10 of the EU MSFD. For its morphological features and anthropogenic pressures, the Adriatic Sea is very sensitive to the accumulation of debris, but data are inconsistent and fragmented. This thesis, in the framework of DeFishGear project, intents to assess marine litter on beaches and on seafloor in the Western Adriatic sea, and test if debris ingestion by fish occurs. Three beaches were sampled during two surveys in 2015. Benthic litter monitoring was carried out in the FAO GSA17 during fall 2014, using a rapido trawl. Litter ingestion was investigated through gut contents analysis of 260 fish belonging to 8 commercial species collected in Western Gulf of Venice. Average litter density on beaches was 1.5 items/m2 during spring, and decreased to 0.8 items/m2 in summer. Litter composition was heterogeneous and varied among sites, even if no significant differences were found. Most of debris consisted of plastic sheets, fragments, polystyrene pieces, mussels nets and cottons bud sticks, showing that sources are many and include aquaculture, land-based activities and local users of beaches. Average density of benthic litter was 913 items/Km2 (82 Kg/Km2). Plastic dominated in terms of numbers and weight, and consisted mainly of bags, sheets and mussel nets. The highest density was found close to the coast, and sources driving the major differences in litter distribution were mussel farms and shipping lanes. Litter ingestion occurred in 47% of examined fish, mainly consisting of fibers. Among species, S. pilchardus swallowed almost all debris categories. Findinds may provide a baseline to set the necessary measures to manage and minimize marine litter in the Western Adriatic region and to protect aquatic life from plastic pollution, even accounting the possible implications on human health.
Resumo:
A low-cost field technique employing retention of the dye neutral-red by lysosomes in coelomocyte cells taken from earthworms (Lumbricus castaneus), was used as a means of assessing the ecological effects (if any) of an industrial accident. Earthworms and soil samples were collected at the site of a large industrial plastics fire in Thetford, UK along a 200 m transect leading from the factory perimeter fence, over a layer of molten plastic impregnated soil and into the surrounding forest. Coelomic fluid extracted from the earthworms was dye-loaded with neutral-red and lysosomal leaking observed. Metal residues in soil and earthworms were found to be highly elevated close to the factory perimeter and to rapidly drop to background levels within the first 50 m of the transect. Coelomocyte cells taken from earthworms adjacent to the factory perimeter showed the shortest period of neutral-red retention (2 min); cells taken from worms further into the surrounding forest had a longer retention time (12 min), whilst cells taken from worms from a control site showed even greater retention times (25 min). Thus, the neutral-red retention times correlated negatively with measured residues of heavy metals in the earthworms, the higher the body metal concentration the shorter the retention time. This field trial has demonstrated the validity of using an in vitro cellular biomarker technique for use in biological impact assessment along gradients of contamination.
Resumo:
Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) whose migration from food packaging is recognized worldwide. However, the real overall food contamination and related consequences are yet largely unknown. Among humans, children’s exposure to BPA has been emphasized because of the immaturity of their biological systems. The main aim of this study was to assess the reproductive impact of BPA leached from commercially available plastic containers used or related to child nutrition, performing ecotoxicological tests using the biomonitoring species Daphnia magna. Acute and chronic tests, as well as single and multigenerational tests were done. Migration of BPA from several baby bottles and other plastic containers evaluated by GC-MS indicated that a broader range of foodstuff may be contaminated when packed in plastics. Ecotoxicological test results performed using defined concentrations of BPA were in agreement with literature, although a precocious maturity of daphnids was detected at 3.0 mg/L. Curiously, an increased reproductive output (neonates per female) was observed when daphnids were bred in the polycarbonate (PC) containers (145.1±4.3 % to 264.7±3.8 %), both in single as in multigenerational tests, in comparison with the negative control group (100.3±1.6 %). A strong correlated dose-dependent ecotoxicological effect was observed, providing evidence that BPA leached from plastic food packaging materials act as functional estrogen in vivo at very low concentrations. In contrast, neonate production by daphnids cultured in polypropylene and non-PC bottles was slightly but not significantly enhanced (92.5±2.0 % to 118.8±1.8 %). Multigenerational tests also revealed magnification of the adverse effects, not only on fecundity but also on mortality, which represents a worrying trend for organisms that are chronically exposed to xenoestrogens for many generations. Two plausible explanations for the observed results could be given: a non-monotonic dose–response relationship or a mixture toxicity effect.
Resumo:
Three juvenile Brazilian sharpnose sharks (Rhizoprionodon lalandii) caught in gillnets in southeast Brazil, southwest Atlantic, were found with plastic debris rings around their gill or mouth region. The rings caused severe abrasion on the sharks' tissues as the animal grew, the collars probably hampering normal feeding and/or ventilation since two of the collared individuals were emaciated. The rings were identified as detachable lid parts from plastic bottles, likely thrown overboard by fishery and/or recreation boats. As several carcharhinid shark species dwells and reproduce in shallow waters, the impact of discarded plastic debris likely is greater on this shark type. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Microplastics are omnipresent in the oceans and generally have negative impacts on the biota. However, flotsam may increase the availability of hard substrates, which are considered a limiting resource for some oceanic species, e.g. as oviposition sites for the ocean insect Halobates. This study describes the use of plastic pellets as an oviposition site for Halobates micans and discusses possible effects on its abundance and dispersion. Inspection of egg masses on stranded particles on beaches revealed that a mean of 24% (from 0% to 62%) of the pellets bore eggs (mean of 5 and max. of 48 eggs per pellet). Most eggs (63%) contained embryos, while 37% were empty egg shells. This shows that even small plastic particles are used as oviposition site by H. micans, and that marine litter may have a positive effect over the abundance and dispersion of this species. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This study examines the distribution, abundance and characteristics of surface micro- and mesoplastic debris in the Western Mediterranean Sea. 41 samples were collected in 2011 (summer) and 2012 (summer). Results, firstly, revealed that micro- (<5mm) and mesoplastic debris were widely and uniformly distributed in this area with average concentrations of 130,000 parts/km(2) and 5700 parts/km(2), respectively. Importantly, a strong correlation between micro- and mesoplastic concentrations was identified. Secondly, a classification based on the shape and appearance of microplastics indicated the predominant presence of fragments (73 %) followed by thin films (14 %). Thirdly, the average mass ratio of microplastic to dry organic matter has been measured at 0.5, revealing a significant presence of microplastics in comparison to plankton. Finally, a correction method was applied in order to correct wind mixing effect on microplastics' vertical distribution. This data allows for a comprehensive view, for the first time, of the spatial distribution and nature of plastic debris in the Western Mediterranean Sea.