746 resultados para Plastic mechanism


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inducible defenses, which provide enhanced resistance after initial attack, are nearly universal in plants. This defense signaling cascade is mediated by the synthesis, movement, and perception of jasmonic acid and related plant metabolites. To characterize the long-term persistence of plant immunity, we challenged Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) with caterpillar herbivory, application of methyl jasmonate, or mechanical damage during vegetative growth and assessed plant resistance in subsequent generations. Here, we show that induced resistance was associated with transgenerational priming of jasmonic acid-dependent defense responses in both species, caused caterpillars to grow up to 50% smaller than on control plants, and persisted for two generations in Arabidopsis. Arabidopsis mutants that are deficient in jasmonate perception (coronatine insensitive1) or in the biogenesis of small interfering RNA (dicer-like2 dicer-like3 dicer-like4 and nuclear RNA polymerase d2a nuclear RNA polymerase d2b) do not exhibit inherited resistance. The observation of inherited resistance in both the Brassicaceae and Solanaceae suggests that this trait may be more widely distributed in plants. Epigenetic resistance to herbivory thus represents a phenotypically plastic mechanism for enhanced defense across generations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The caffeine is a mild psychostimulant that has positive cognitive effects at low doses, while promotes detrimental effects on these processes at higher doses. The episodic-like memory can be evaluated in rodents through hippocampus-dependent tasks. The dentate gyrus is a hippocampal subregion in which neurogenesis occurs in adults, and it is believed that this process is related to the function of patterns separation, such as the identification of spatial and temporal patterns when discriminating events. Furthermore, neurogenesis is influenced spatial and contextual learning tasks. Our goal was to evaluate the performance of male Wistar rats in episodic-like tasks after acute or chronic caffeine treatment (15mg/kg or 30mg/kg). Moreover, we assessed the chronic effect of the caffeine treatment, as well as the influence of the hippocampus-dependent learning tasks, on the survival of new-born neurons at the beginning of treatment. For this purpose, we used BrdU to label the new cells generated in the dentate gyrus. Regarding the acute treatment, we found that the saline group presented a tendency to have better spatial and temporal discrimination than caffeine groups. The chronic caffeine group 15 mg/kg (low dose) showed the best discrimination of the temporal aspect of episodic-like memory, whereas the chronic caffeine group 30mg/kg (high dose) was able to discriminate temporal order, only in a condition of greater difficulty. Assessment of neurogenesis using immunohistochemistry for evaluating survival of new-born neurons generated in the dentate gyrus revealed no difference among groups of chronic treatment. Thus, the positive mnemonic effects of the chronic caffeine treatment were not related to neuronal survival. However, another plastic mechanism could explain the positive mnemonic effect, given that there was no improvement in the acute caffeine groups

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A memória é um fenômeno decorrente de um conjunto de processos fisiológicos denominado plasticidade. Várias formas de plasticidade são necessárias no processo de formação da memória e também são responsáveis pelo gerenciamento do comportamento. O fenômeno eletrofisiológico chamado potencialização de longa duração (PLD), cuja ocorrência no hipocampo merece destaque, foi proposto como sendo o mecanismo de plasticidade constitutivo das bases da consolidação da memória nesta região encefálica. A importância da plasticidade na região CA1 do hipocampo se manifesta em diversas formas de aprendizado, como espacial e condicionamento clássico. Os eventos bioquímicos que culminam na plasticidade e formação da memória sofrem influência de diversos sistemas de neurotransmissores e evidências indicam também a participação do sistema purinérgico, provavelmente através dos receptores ionotrópicos P2X. Receptores purinérgicos do subtipo P2X7 (P2X7R), largamente distribuídos no sistema nervoso central (SNC), além de possuírem várias características que os distinguem de outros subtipos de receptores P2X, estão envolvidos na regulação da liberação de neurotransmissores cruciais para a promoção da PLD na região hipocampal e formação da memória. Assim, este trabalho objetivou avaliar a participação dos P2X7R em camundongos geneticamente modificados (KO), que não expressam o receptor P2X7, e ratos através da exposição destes a diferentes tarefas comportamentais, bem como avaliar o efeito do enriquecimento ambiental sobre possíveis déficits mnemônicos resultantes da supressão gênica sobre o receptor P2X7. Os resultados sugerem que os P2X7R participam tanto da memória aversiva como da memória espacial: o bloqueio farmacológico com o antagonista específico de P2X7R A-740003 em diferentes janelas temporais causou prejuízos mnemônicos em ratos submetidos à tarefa do medo condicionado contextual (MCC), enquanto a deleção do P2X7R causou déficits mnemônicos a camundongos nas tarefas do labirinto aquático de Morris e no MCC, indicando prejuízos nas memórias espacial e aversiva, respectivamente. Experimentos com enriquecimento ambiental sugerem que esta forma de estimulação contribui na reversão dos déficits mnemônicos causado pela ausência do P2X7R. Por fim, nenhuma alteração na memória de habituação foi observada em animais com deleção gênica para o P2X7R.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the mechanism of ribonuclease inhibition by ribonuclease inhibitor, a protein built of leucine-rich repeats, based on the crystal structure of the complex between the inhibitor and ribonuclease A. The structure was determined by molecular replacement and refined to an R(cryst) of 19.4% at 2.5 Angstrom resolution. Ribonuclease A binds to the concave region of the inhibitor protein comprising its parallel beta-sheet and loops. The inhibitor covers the ribonuclease active site and directly contacts several active-site residues. The inhibitor only partially mimics the RNase-nucleotide interaction and does not utilize the pi phosphate-binding pocket of ribonuclease A, where a sulfate ion remains bound. The 2550 Angstrom(2) of accessible surface area buried upon complex formation may be one of the major contributors to the extremely tight association (K-i = 5.9 x 10(-14) M). The interaction is predominantly electrostatic; there is a high chemical complementarity with 18 putative hydrogen bonds and salt links, but the shape complementarity is lower than in most other protein-protein complexes. Ribonuclease inhibitor changes its conformation upon complex formation; the conformational change is unusual in that it is a plastic reorganization of the entire structure without any obvious hinge and reflects the conformational flexibility of the structure of the inhibitor. There is a good agreement between the crystal structure and other biochemical studies of the interaction. The structure suggests that the conformational flexibility of RI and an unusually large contact area that compensates for a lower degree of complementarity may be the principal reasons for the ability of RI to potently inhibit diverse ribonucleases. However, the inhibition is lost with amphibian ribonucleases that have substituted most residues corresponding to inhibitor-binding residues in RNase A, and with bovine seminal ribonuclease that prevents inhibitor binding by forming a dimer. (C) 1996 Academic Press Limited

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposite materials have received considerable attention in recent years due to their novel properties. Grain boundaries are considered to play an important role in nanostructured materials. This work focuses on the finite element analysis of the effect of grain boundaries on the overall mechanical properties of aluminium/alumina composites. A grain boundary is incorporated into the commonly used unit cell model to investigate its effect on material properties. By combining the unit cell model with an indentation model, coupled with experimental indentation measurements, the ''effective'' plastic property of the grain boundary is estimated. In addition, the strengthening mechanism is also discussed based on the Estrin-Mecking model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arteriovenous-lymphatic endothelial cell fates are specified by the master regulators, namely, Notch, COUP-TFII, and Prox1. Whereas Notch is expressed in the arteries and COUP-TFII in the veins, the lymphatics express all 3 cell fate regulators. Previous studies show that lymphatic endothelial cell (LEC) fate is highly plastic and reversible, raising a new concept that all 3 endothelial cell fates may co-reside in LECs and a subtle alteration can result in a reprogramming of LEC fate. We provide a molecular basis verifying this concept by identifying a cross-control mechanism among these cell fate regulators. We found that Notch signal down-regulates Prox1 and COUP-TFII through Hey1 and Hey2 and that activated Notch receptor suppresses the lymphatic phenotypes and induces the arterial cell fate. On the contrary, Prox1 and COUP-TFII attenuate vascular endothelial growth factor signaling, known to induce Notch, by repressing vascular endothelial growth factor receptor-2 and neuropilin-1. We show that previously reported podoplanin-based LEC heterogeneity is associated with differential expression of Notch1 in human cutaneous lymphatics. We propose that the expression of the 3 cell fate regulators is controlled by an exquisite feedback mechanism working in LECs and that LEC fate is a consequence of the Prox1-directed lymphatic equilibrium among the cell fate regulators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate perception of the order of occurrence of sensory information is critical for the building up of coherent representations of the external world from ongoing flows of sensory inputs. While some psychophysical evidence reports that performance on temporal perception can improve, the underlying neural mechanisms remain unresolved. Using electrical neuroimaging analyses of auditory evoked potentials (AEPs), we identified the brain dynamics and mechanism supporting improvements in auditory temporal order judgment (TOJ) during the course of the first vs. latter half of the experiment. Training-induced changes in brain activity were first evident 43-76 ms post stimulus onset and followed from topographic, rather than pure strength, AEP modulations. Improvements in auditory TOJ accuracy thus followed from changes in the configuration of the underlying brain networks during the initial stages of sensory processing. Source estimations revealed an increase in the lateralization of initially bilateral posterior sylvian region (PSR) responses at the beginning of the experiment to left-hemisphere dominance at its end. Further supporting the critical role of left and right PSR in auditory TOJ proficiency, as the experiment progressed, responses in the left and right PSR went from being correlated to un-correlated. These collective findings provide insights on the neurophysiologic mechanism and plasticity of temporal processing of sounds and are consistent with models based on spike timing dependent plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urea-formaldehyde resins find numerous applications in adhesive, textile finishing and moulded plastic industries. Kinetic investigations of the reactions of urea and its related compounds with formaldehyde in aqueous acid, alkaline and neutral media have been carried out. A thin—layer chromatographic method was developed for the separation and estimation of the products of these reactions. Using this technique the various initial steps in the reactions were analysed and the rate constants have been determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lava dome eruptions are sometimes characterised by large periodic fluctuations in extrusion rate over periods of hours that may be accompanied by Vulcanian explosions and pyroclastic flows. We consider a simple system of nonlinear equations describing a 1D flow of lava extrusion through a deep elastic dyke feeding a shallower cylindrical conduit in order to simulate this short-period cyclicity. Stick-slip conditions depending on a critical shear stress are assumed at the wall boundary of the cylindrical conduit. By analogy with the behaviour of industrial polymers in a plastic extruder, the elastic dyke acts like a barrel and the shallower cylindrical portion of the conduit as a die for the flow of magma acting as a polymer. When we applied the model to the Soufrière Hills Volcano, Montserrat, for which the key parameters have been evaluated from previous studies, cyclic extrusions with periods from 3 to 30 h were readily simulated, matching observations. The model also reproduces the reduced period of cycles observed when a major unloading event occurs due to lava dome collapse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plasma source, sustained by the application of a floating high voltage (±15 kV) to parallel-plate electrodes at 50 Hz, has been achieved in a helium/air mixture at atmospheric pressure (P = 105 Pa) contained in a zip-locked plastic package placed in the electrode gap. Some of the physical and antimicrobial properties of this apparatus were established with a view to ascertain its performance as a prototype for the disinfection of fresh produce. The current–voltage (I–V) and charge–voltage (Q–V) characteristics of the system were measured as a function of gap distance d, in the range (3 × 103 ≤ Pd ≤ 1.0 × 104 Pa m). The electrical measurements showed this plasma source to exhibit the characteristic behaviour of a dielectric barrier discharge in the filamentary mode and its properties could be accurately interpreted by the two-capacitance in series model. The power consumed by the discharge and the reduced field strength were found to decrease quadratically from 12.0 W to 4.5 W and linearly from 140 Td to 50 Td, respectively, in the range studied. Emission spectra of the discharge were recorded on a relative intensity scale and the dominant spectral features could be assigned to strong vibrational bands in the 2+ and 1− systems of N2 and ${\rm N}_2^+$ , respectively, with other weak signatures from the NO and OH radicals and the N+, He and O atomic species. Absolute spectral intensities were also recorded and interpreted by comparison with the non-equilibrium synthetic spectra generated by the computer code SPECAIR. At an inter-electrode gap of 0.04 m, this comparison yielded typical values for the electron, vibrational and translational (gas) temperatures of (4980 ± 100) K, (2700 ± 200) K and (300 ± 100) K, respectively and an electron density of 1.0 × 1017 m−3. A Boltzmann plot also provided a value of (3200 ± 200 K) for the vibrational temperature. The antimicrobial efficacy was assessed by studying the resistance of both Escherichia coli K12 its isogenic mutants in soxR, soxS, oxyR, rpoS and dnaK selected to identify possible cellular responses and targets related with 5 min exposure to the active gas in proximity of, but not directly in, the path of the discharge filaments. Both the parent strain and mutants populations were significantly reduced by more than 1.5 log cycles in these conditions, showing the potential of the system. Post-treatment storage studies showed that some transcription regulators and specific genes related to oxidative stress play an important role in the E. coli repair mechanism and that plasma exposure affects specific cell regulator systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an experimental investigation of the characteristics of leak noise in plastic water-filled pipes. An experimental set-up was designed to identify the physical mechanisms of leak noise generation. Possible mechanisms include cavitation and turbulence. The experiments show that cavitation is not responsible for leak noise generation and clearly indicate that turbulence is the main mechanism, at least in the experiments conducted. An alternative experimental set-up was also designed to identify the characteristics of leak noise spectra and to investigate how the spectra are affected by the leak size and the leak flow velocity. A number of different hole sizes (leaks) starting from 1 mm diameter, increasing progressively every 0.5 mm until a size of 4 mm diameter were tested for different jet velocities and an empirical model that describes this behaviour is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulating of sintering kinetics and therefore makes it possible to obtain Si3N4-based ceramics with tailored microstructures, consisting of grains with either equiaxed or elongated morphology. The presence of an extra liquid phase is necessary for forming tough interlocking microstructures in Yb/Y-stabilised α-sialon by HP. The liquid is introduced by a new method, namely by increasing the O/N ratio in the general formula RExSi12-(3x+n)Al3x+nOnN16-n while keeping the cation ratios of RE, Si and Al constant. Monophasic α-sialon ceramics with tailored microstructures, consisting of either fine equiaxed or elongated grains, have been obtained by using SPS, whether or not such an extra liquid phase is involved. The three processes, namely densification, phase transformation and grain growth, which usually occur simultaneously during conventional HP consolidation of Si3N4-based ceramics, have been precisely followed and separately investigated in the SPS process. The enhanced densification is attributed to the non-equilibrium nature of the liquid phase formed during heating. The dominating mechanism during densification is the enhanced grain boundary sliding accompanied by diffusion- and/or reaction-controlled processes. The rapid grain growth is ascribed to a dynamic ripening mechanism based on the formation of a liquid phase that is grossly out of equilibrium, which in turn generates an extra chemical driving force for mass transfer. Monophasic α-sialon ceramics with interlocking microstructures exhibit improved damage tolerance. Y/Yb- stabilised monophasic α-sialon ceramics containing approximately 3 vol% liquid with refined interlocking microstructures have excellent thermal-shock resistance, comparable to the best β-sialon ceramics with 20 vol% additional liquid phase prepared by HP. The obtained sialon ceramics with fine-grained microstructure show formidably improved superplasticity in the presence of an electric field. The compressive strain rate reaches the order of 10-2 s-1 at temperatures above 1500oC, that is, two orders of magnitude higher than that has been realised so far by any other conventional approaches. The high deformation rate recorded in this work opens up possibilities for making ceramic components with complex shapes through super-plastic forming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of temperature on hydrogen assisted fatigue crack propagation are investigated in three steels in the low-to-medium strength range; a low alloy structural steel, a super duplex stainless steel, and a super ferritic stainless steel. Significant enhancement of crack growth rates is observed in hydrogen gas at atmospheric pressure in all three materials. Failure occurs via a mechanism of time independent, transgranular, cyclic cleavage over a frequency range of 0.1-5 Hz. Increasing the temperature in hydrogen up to 80°C markedly reduces the degree of embrittlement in the structural and super ferritic steels. No such effect is observed in the duplex stainless steel until the temperature exceeds 120°C. The temperature response may be understood by considering the interaction between absorbed hydrogen and micro-structural traps, which are generated in the zone of intense plastic deformation ahead of the fatigue crack tip. © 1992.