812 resultados para Plastic coatings
Resumo:
Ag-containing polyethyleneoxide (FEO)-like thin films have been deposited in Radio Frequency Glow Discharges fed with vapors of diethyleneglycol-dimethyl-ether and argon. Proper experimental conditions have been utilized in order to fragment the monomer in the glow and, at the same time, sputter Ag from the silver RF cathode of the reactor, in a way that polyethyleneoxide(PEO)-like coatings with embedded Ag clusters have been deposited at the ground electrode. The composition of the coatings has been investigated by means of different techniques; the plasma process has been investigated by means of Actinometric Optical Emission Spectroscopy. A correlation has been found between the amount of silver embedded in the coatings and that sputtered in the discharge, monitored by actinometry, that could eventually be utilized to control in situ the deposition process.
Resumo:
The one-step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3-hexylthiophene) (P3HT) as well as P3HT:fullerene bulk-heterojunction blends can be spin-coated from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square-centimeter-sized domains that are composed of one spherulite-like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite-like structures. Moreover, grazing-incidence wide-angle X-ray scattering reveals an increased relative degree of crystallinity and predominantly flat-on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip-coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi-crystalline conjugated polymer systems is established. Those include other poly(3-alkylthiophene)s, two polyfluorenes, the low band-gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends. Macroscopic spherulite-like structures of the conjugated polymer poly(3-hexylthiophene) (P3HT) grow directly during spin-coating. This is achieved by processing P3HT or P3HT:fullerene bulk heterojunction blends from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene and a second carrier solvent such as chlorobenzene. Epitaxial growth of the polymer on solidified solvent crystals gives rise to circular-symmetric, spherulite-like structures that feature a high degree of anisotropy.
Resumo:
In this work pellets containing chitosan for colonic drug delivery were developed. The influence of the polysaccharide in the pellets was evaluated by swelling, drug dissolution and intestinal permeation studies. Drug-loaded pellets containing chitosan as swellable polymer were coated with an inner layer of Kollicoat® SR 30 D and an outer layer of the enteric polymer Kollicoat® MAE 30 DP in a fluidized-bed apparatus. Metronidazole released from pellets was assessed using Bio-Dis dissolution method. Swelling, drug release and intestinal permeation were dependent on the chitosan and the coating composition. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. The film coating was found to be the main factor controlling the drug release and the chitosan controlling the drug intestinal permeation. Coated pellets containing chitosan show great potential as a system for drug delivery to the colon. © 2012 Elsevier Ltd.
Resumo:
In this study, we report on a new route of PEGylation of superparamagnetic iron oxide nanoparticles (SPIONs) by polycondensation reaction with carboxylate groups. Structural and magnetic characterizations were performed by X-ray diffractometry (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The XRD confirmed the spinel structure with a crystallite average diameter in the range of 3.5-4.1 nm in good agreement with the average diameter obtained by TEM (4.60-4.97 nm). The TGA data indicate the presence of PEG attached onto the SPIONs' surface. The SPIONs were superparamagnetic at room temperature with saturation magnetization (M S) from 36.7 to 54.1 emu/g. The colloidal stability of citrate- and PEG-coated SPIONs was evaluated by means of dynamic light scattering measurements as a function of pH, ionic strength, and nature of dispersion media (phosphate buffer and cell culture media). Our findings demonstrated that the PEG polymer chain length plays a key role in the coagulation behavior of the Mag-PEG suspensions. The excellent colloidal stability under the extreme conditions we evaluated, such as high ionic strength, pH near the isoelectric point, and cell culture media, revealed that suspensions comprising PEG-coated SPION, with PEG of molecular weight 600 and above, present steric stabilization attributed to the polymer chains attached onto the surface of SPIONs. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Fretting is of a serious concern in many industrial components, specifically, in nuclear industry for the safe and reliable operation of various component and/or system. Under fretting condition small amplitude oscillations induce surface degradation in the form of surface cracks and/or surface wear. Comprehensive experimental studies have been carried out simulating different fretting regimes under ambient and vacuum (10(-9) MPa) conditions and, temperature up to 400 degrees C. Studies have been carried out with stainless steel spheres on stainless steel flats, and stainless steel spheres against chromium carbide, with 25% nickel chrome binder coatings. Mechanical responses are correlated with the damage observed. It has been observed that adhesion plays a vital role in material degradation process, and its effectiveness depends on mechanical variables such as normal load, interfacial tangential displacement, characteristics of the contacting bodies and most importantly on the environment conditions. Material degradation mechanism for ductile materials involved severe plastic deformation, which results in the initiation or nucleation of cracks. Ratcheting has been observed as the governing damage mode for crack nucleation under cyclic tangential loading condition. Further, propagation of the cracks has been observed under fatigue and their orientation has been observed to be governed by the contact conditions prevailing at the contact interface. Coated surfaces show damage in the form of brittle fracture and spalling of the coatings. Existence of stick slip has been observed under high normal load and low displacement amplitude. It has also been observed that adhesion at the contact interface and instantaneous cohesive strength of the contacting bodies dictates the occurrence of material transfer. The paper discusses the mechanics and mechanisms involved in fretting damage under controlled environment conditions. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The diamond-like carbon (DLC) films with different thicknesses on 9Crl8 bearing steels were prepared using vacuum magnetic-filtering arc plasma deposition. Vickers indentation. nanoin-dentation and nanoscratch tests were used to characterize the DLC films with a wide range of applied loads. Mechanical and tribological behaviors of these submicron films were investigated and interpreted. The hardnesses of 9Crl8 and DLC, determined by nanoindentation, are approximately 8GPa and 60GPa respectively; their elastic moduli are approximately 25OGPa and 600GPa respectively. The friction coefficients of 9Crl8, DLC. organic coating, determined by nanoscratch, are approximately 0. 35, 0. 20 and 0. 13 respectively. It is demonstrated that nanoindentation and nanoscratch tests can provide more information about the near-surface elastic-plastic deformation, friction and wear properties. The correlation of mechanical properties and scratch resistance of DLC films on 9Crl8 steels can provide an assessment for the load-carrying capacity and wear resistance
Resumo:
Coatings of TiCp reinforced composite have been produced by laser cladding. Two kinds of coating with different TiCp origins were investigated, i.e. undissolved TiCp and in situ TiCp. For undissolved TiCp, epitaxial growth of TiC, precipitation of CrB, and a chemical reaction occur at phase interfaces, and nanoindentation loading curves show pop in marks caused by the plastic deformation associated with crack formation or debonding of TiCp from the matrix. As for in situ TiCp, no pop in mark appears. Meanwhile, in situ TiCp produces hardness and elastic modulus values that are higher than those produced by the coating that contains undissolved TiCp.
Resumo:
Nanoindentation and nanoscratch tests were performed for titanium nitride (TiN) coatings on different tool steel substrates to investigate the indentation/scratch induced deformation behavior of the coatings and the adhesion of the coating–substrate interfaces and their tribological property. In this work, TiN coatings with a thickness of about 500 nm were grown on GT35, 9Cr18 and 40CrNiMo steels using vacuum magnetic-filtering arc plasma deposition. In the nanoindentation tests, the hardness and modulus curves for TiN/GT35 reduced the slowest around the film thickness 500 nm with the increase of indentation depth, followed by TiN/9Cr18 and TiN/40CrNiMo. Improving adhesion properties of coating and substrate can decrease the differences of internal stress field. The scratch tests showed that the scratch response was controlled by plastic deformation in the substrate. The substrate plays an important role in determining the mechanical properties and wear resistance of such coatings. TiN/GT35 exhibited the best load-carrying capacity and scratch/wear resistance. As a consequence, GT35 is the best substrate for TiN coatings of the substrate materials tested.
Resumo:
Titanium carbide particle (TiCp) reinforced Ni alloy composite coatings were synthesized by laser cladding using a cw 3 kW CO2 laser. Two kinds of coatings were present in terms of TiCp origins, i.e. undissolved and in situ reacted TiCp, respectively. The former came from the TiCp pre-coated on the sample, whereas the latter from in situ reaction between titanium and graphite in the molten pool during laser irradiation. Conventional and high-resolution transmission electron microscope observations showed the epitaxial growth of TiC, the precipitation of CrB, and the chemical reaction between Ti and B elements around phase interfaces of undissolved TiCp. The hardness, H, and elastic modulus, E, were measured by nanoindentation of the matrix near the TiCp interface. For undissolved TiCp, the loading curve revealed pop-in phenomena caused by the plastic deformation of the crack formation or debounding of TiCp from the matrix. As for in situ generated TiCp, no pop-in mark appears. On the other hand, in situ reacted TiCp led to much higher hardness and modulus than that in the case of undissolved TiCp. The coating reinforced by in situ generated TiCp displayed the highest impact wear resistance at both low and high impact conditions, as compared with coatings with undissolved TiCp and without TiCp. The impact wear resistance of the coating reinforced by undissolved TiCp increases at a low impact work but decreases at a high impact work, as compared with the single Ni alloy coating. The degree of wear for the composite coating depends primarily on the debonding removal of TiCp.
Resumo:
By means of a surface plastic deformation method a nanocrystalline (NC) intermetallic compound was in situ synthesized on the surface layer of bulk zirconium (Zr). Hardened steel shots (composition: 1.0C, 1.5Cr, base Fe in wt.%) were used to conduct repetitive and multidirectional peening on the surface layer of Zr. The microstructure evolution of the surface layer was investigated by X-ray diffraction and scanning and transmission electron microscopy observations. The NC intermetallic layer of about 25 gm thick was observed and confirmed by concentration profiles of Zr, Fe and Cr, and was found to consist of the Fe100-xCrx compound with an average grain size of 22 nm. The NC surface layer exhibited an extremely high average hardness of 10.2 GPa. The Zr base immediately next to the compound/Zr interface has a grain size of similar to 250 nm, and a hardness of similar to 3.4 GPa. The Fe100-xCrx layer was found to securely adhere to the Zr base. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
This paper combines the four-point bending test, SEM and finite element method to study the interface fracture property of PEO coatings on aluminum alloy. The interface failure mode of the coating on the compression side is revealed. The ceramic coating crack firstly along the 45 degrees to the interface, then the micro crack in the coating deduces the interface crack. The plastic deformation observed by SEM shows excellent adhesion property between the coating and substrate. The plastic deformation in the substrate is due to the interfacial crack extension, so the interface crack mode of PEO coatings is ductile crack. The results of FEM show that the compression strength is about 600 MPa. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Thermal barrier coatings with a columnar microstructure are prone to erosion damage by a mechanism of surface cracking upon impact by small foreign particles. In order to explore this erosion mechanism, the elastic indentation and the elastic-plastic indentation responses of a columnar thermal barrier coating to a spherical indenter were determined by the finite element method and by analytical models. It was shown that the indentation response is intermediate between that of a homogeneous half-space and that given by an elastic-plastic mattress model (with the columns behaving as independent non-linear springs). The sensitivity of the indentation behaviour to geometry and to the material parameters was explored: the diameter of the columns, the gap width between columns, the coefficient of Coulomb friction between columns and the layer height of the thermal barrier coating. The calculations revealed that the level of induced tensile stress is sufficient to lead to cracking of the columns at a depth of about the column radius. It was also demonstrated that the underlying soft bond coat can undergo plastic indentation when the coating comprises parallel columns, but this is less likely for the more realistic case of a random arrangement of tapered columns. © 2009 Elsevier B.V.
Resumo:
We have previously shown that proteins can be incorporated into the latticework of calcium phosphate layers when biomimetically coprecipitated with the inorganic components, upon the surfaces of titanium-alloy implants. In the present study, we wished to ascertain whether recombinant human bone morphogenetic protein 2 (rhBMP-2) thus incorporated retained its bioactivity as an osteoinductive agent. Titanium alloy implants were coated biomimetically with a layer of calcium phosphate in the presence of different concentrations of rhBMP-2 (0.1-10 microg/mL). rhBMP-2 was successfully incorporated into the crystal latticework, as revealed by protein blot staining. rhBMP-2 was taken up by the calcium phosphate coatings in a dose-dependent manner, as determined by ELISA. Rat bone marrow stromal cells were grown directly on these coatings for 8 days. Their osteogenicity was then assessed quantitatively by monitoring alkaline phosphatase activity. This parameter increased as a function of rhBMP-2 concentrations within the coating medium. rhBMP-2 incorporated into calcium phosphate coatings was more potent in stimulating the alkaline phosphatase activity of the adhering cell layer than was the freely suspended drug in stimulating that of cell layers grown on a plastic substratum. This system may be of osteoinductive value in orthopedic and dental implant surgery.
Resumo:
Depuis ces dernières décennies, le domaine des biomatériaux a connu un essor considérable, évoluant de simples prothèses aux dispositifs les plus complexes pouvant détenir une bioactivité spécifique. Outre, le progrès en science des matériaux et une meilleure compréhension des systèmes biologiques a offert la possibilité de créer des matériaux synthétiques pouvant moduler et stimuler une réponse biologique déterminée, tout en améliorant considérablement la performance clinique des biomatériaux. En ce qui concerne les dispositifs cardiovasculaires, divers recouvrements ont été développés et étudiés dans le but de modifier les propriétés de surface et d’améliorer l’efficacité clinique des tuteurs. En effet, lorsqu’un dispositif médical est implanté dans le corps humain, son succès clinique est fortement influencé par les premières interactions que sa surface établit avec les tissus et les fluides biologiques environnants. Le recouvrement à la surface de biomatériaux par diverses molécules ayant des propriétés complémentaires constitue une approche intéressante pour atteindre différentes cibles biologiques et orienter la réponse de l’hôte. De ce fait, l’élucidation de l’interaction entre les différentes molécules composant les recouvrements est pertinente pour prédire la conservation de leurs propriétés biologiques spécifiques. Dans ce travail, des recouvrements pour des applications cardiovasculaires ont été créés, composés de deux molécules ayant des propriétés biologiques complémentaires : la fibronectine (FN) afin de promouvoir l’endothélialisation et la phosphorylcholine (PRC) pour favoriser l’hémocompatibilité. Des techniques d’adsorption et de greffage ont été appliquées pour créer différents recouvrements de ces deux biomolécules sur un polymère fluorocarboné déposé par traitement plasma sur un substrat en acier inoxydable. Dans un premier temps, des films de polytétrafluoroéthylène (PTFE) ont été utilisés en tant que surface modèle afin d’explorer l’interaction de la PRC et de la FN avec les surfaces fluorocarbonées ainsi qu’avec des cellules endothéliales et du sang. La stabilité des recouvrements de FN sur l’acier inoxydable a été étudiée par déformation, mais également par des essais statiques et dynamiques sous-flux. Les recouvrements ont été caractérisés par Spectroscopie Photoéléctronique par Rayons X, immunomarquage, angle de contact, Microscopie Électronique de Balayage, Microscopie de Force Atomique et Spectrométrie de Masse à Ionisation Secondaire à Temps de Vol (imagerie et profilage en profondeur). Des tests d’hémocompatibilité ont été effectués et l’interaction des cellules endothéliales avec les recouvrements a également été évaluée. La FN greffée a présenté des recouvrements plus denses et homogènes alors que la PRC quant à elle, a montré une meilleure homogénéité lorsqu’elle était adsorbée. La caractérisation de la surface des échantillons contenant FN/PRC a été corrélée aux propriétés biologiques et les recouvrements pour lesquels la FN a été greffée suivie de l’adsorption de la PRC ont présenté les meilleurs résultats pour des applications cardiovasculaires : la promotion de l’endothélialisation et des propriétés d’hémocompatibilité. Concernant les tests de stabilité, les recouvrements de FN greffée ont présenté une plus grande stabilité et densité que dans le cas de l’adsorption. En effet, la pertinence de présenter des investigations des essais sous-flux versus des essais statiques ainsi que la comparaison des différentes stratégies pour créer des recouvrements a été mis en évidence. D’autres expériences sont nécessaires pour étudier la stabilité des recouvrements de PRC et de mieux prédire son interaction avec des tissus in vivo.