823 resultados para Plastic Pipe Extrusion
Resumo:
When plastic pipe is solidified, it proceeds through a long cooling chamber. Inside this chamber, inside the hollow extrudate, the plastic is molten, and this inner surface solidifies last. Sag, the flow due to the self-weight of the molten plastic, then happens in this cooling chamber, and sometimes, thickened regions (called knuckles) arise in the lower quadrants, especially of large diameter thickwalled pipes. To compensate for sag, engineers normally shift the die centerpiece downward. This thesis focuses on the consequences of this decentering. Specifically, when the molten polymer is viscoelastic, as is normally the case, a downward lateral force is exerted on the mandrel. Die eccentricity also affects the downstream axial force on the mandrel. These forces govern how rigidly the mandrel must be attached (normally, on a spider die). We attack this flow problem in eccentric cylindrical coordinates, using the Oldroyd 8-constant constitutive model framework. Specifically, we revise the method of Jones (1964), called polymer process partitioning. We estimate both axial and lateral forces. We develop a corresponding map to help plastics engineers predict the extrudate shape, including extrudate knuckles. From the mass balance over the postdie region, we then predict the shape of the extrudate entering the cooling chamber. We further include expressions for the stresses in the extruded polymer melt. We include detailed dimensional worked examples to show process engineers how to use our results to design pipe dies, and especially to suppress extrudate knuckling.
Resumo:
In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.
Resumo:
Leakage in buried pipes is one of the main concerns for water companies due to the scarcity of potable water sources. Older metallic pipelines have been replaced by plastic pipes in such systems, which makes it more difficult to locate leaks using acoustics and vibration. This is mainly because of the high attenuation of leak signals caused by the damping in the pipe wall. To investigate acoustic methods in leak location in controlled conditions, a bespoke test rig was constructed in the UK. In this paper, data from this test-rig is used to discuss some issues that arise when using two contemporary correlators. Of particular interest, is the way in which a resonance in the system can have a profound effect on the estimate of the position of the leak depending on the way in which the leak noise signals are processed. © (2013) Trans Tech Publications.
Resumo:
This research, initiated in October 1992, was located at the intersection of Blairs Ferry Road and Lindale Drive in the City of Marion. The wall is located on the southeast corner of the intersection. Reinforced retaining wall construction started with a five inch base of roadstone with one inch of sand for leveling purposes. One and one-half to two feet of one inch clean stone was placed behind the blocks. A four inch perforated plastic pipe was placed approximately nine inches from the bottom of the one inch clean stone. The Tenswal, tensar geogrid was placed at every third layer. Openings in the Tenswal are hooked over plastic dowels in the blocks. The tenswal reaches from the face of the wall back 5' to 8'. The cost for constructing this wall was $124,400. The wall has performed well for the past five years. The wall improves the aesthetics of a high traffic volume intersection of an urban area. Many positive comments have been received by the city regarding its appearance. The City of Marion has been pleased with the wall and has used this type of wall on subsequent projects.
Resumo:
Diplomityössä tutkittiin erilaisten raaka-ainemuotojen hyödyntämistä puumuovikomposiitin valmistuslinjastossa ja raaka-ainemuotojen vaikutusta valmistuslinjaston kannattavuuteen. Työssä etsittiin kannattavinta yhdistelmää raaka-ainemuotojen ja valmistusvaihtoehtojen välille. Työn johdanto osuudessa käsitellään aiheeseen liittyvää kirjallisuutta ja tutkimuksia. Siinä esitellään valmistusprosessin vaiheet ja raaka-aineet, niihin vaikuttavat tekijät, valmistuksen taloudellisuus ja investointikäsitteet. Käytännön osuus koostuu valmistusprosessin taloudellisesta analyysista ja laboratoriossa suoritetuista koeajoista. Taloudellisessa analyysissa selvitettiin raaka-ainemuotojen kannattavuudet eri valmistusvaihtoehdoille ja koeajoissa tutkittiin raaka-ainemuotojen todellista käyttäytymistä ekstruusiossa kahdella erilaisella profiililla. Taloudellisen analyysin perusteella paras kannattavuus valmistusprosessissa saavutetaan puupelleteillä ja yksivaiheinen valmistus on kannattavampaa kuin kaksivaiheinen valmistus kaikilla raaka-ainemuodoilla. Kaksivaiheinen valmistus voisi kuitenkin teoriassa olla kannattavampaa kuin yksivaiheinen. Koeajoissa suurin maksimituotos saavutettiin puumuovipuristeilla, mutta ajettavuuden kannalta sopivin raaka-ainemuoto linjalle olisi jauhemainen sahanpuru. Puumuovipuristeita käytettäessä oli erittäin vaikeaa löytää ekstruuderille sopivia muuttujien arvoja ja muuttujien säätäminen muuttui vaikeammaksi, kun käytössä oli monimutkaisempi terassilautaprofiili.
Resumo:
Eristettyjen muoviputkien kuljetus- tai asennusvaiheessa on mahdollista, että putken suojakuori rikkoutuu mekaanisen iskun vaikutuksesta ja putken sisään pääsee vettä. Huonoimmassa tapauksessa vesi pääsee etenemään suojakuoren ja eristekerroksen välissä talon sisälle ja aiheuttaa mittavat kosteusvahingot. Tämän diplomityön tarkoituksena oli selvittää, onko eristetylle muoviputkelle mahdollista toteuttaa tuotantotaloudellisesti tuplakuori-rakenne. Tuplakuoren tarkoituksena oli tässä työssä estää putken sisärakenteisiin päässeen veden eteneminen putken pitkittäissuunnassa. Diplomityössä käsiteltiin muutamia vaihtoehtoisia ratkaisuja toteuttaa tuplakuori-rakenne joista lopulta päädyttiin keskittymään muovikalvon käyttöön. Muovikalvon käytöllä oli lähinnä kaksi tarkoitusta. Tärkeimpänä oli saada muovikalvo sulamaan eristekerroksen ja suojakuoren väliin. Tällöin sulanut muovikalvo toimisi liiman tavoin ja hitsaisi eristekerroksen ja suojakuoren toisiinsa kiinni. Näin veden eteneminen eristekerroksen ja suojakuoren välissä saataisiin estetyksi. Muovikalvo oli myös tarkoitus kiristää eristepaketin päälle niin kireälle, että eristepaketin halkaisijaa saataisiin pienennettyä. Muovikalvon käyttöön perehdyttiin suorittamalla tuotantolinjalla koeajoja. Koeajoissa kokeiltiin erilaisia ja erikokoisia putkituotteita erilaisilla tuotantoparametreilla. Näin pyrittiin löytämään parhaat parametrit ja arvot, joilla muovikalvoa pystyttäisiin tulevaisuudessa käyttämään jatkuvassa tuotannossa. Koeajojen tuloksista voitiin havaita, että kalvoitetut putkituotteet käyttäytyivät tuotannossa hyvin eri tavoin.
Resumo:
To determine the location of leaks in buried water pipes, acoustic methods are often used. These have proven to be very effective in metallic pipes but have been problematic in modern plastic pipes. In this paper the reason why this is so is discussed together with some measurements that were made on a bespoke test rig built by South Staffs Water plc. A particular problem is the estimate of the wavespeed. Tables are frequently used for this purpose, but these are often inaccurate and this means that a leak cannot be located accurately. An in-situ measure of the wavespeed is thus preferable. In this paper it is shown that there are significant issues in obtaining an accurate estimate of the wavespeed when a leak is present in the system. A method is proposed that overcomes some of these problems, which is discussed and is demonstrated using some data from the bespoke test-rig. © (2013) Trans Tech Publications.
Resumo:
Innerdalen was once a mountain valley (ca. 780 m a.s.l.) with birch forests, bogs and several summer farms. Today it is a 6.5 km**2 artifical lake. In 1980 and 1981 archaeological and palynological investigations were carried out due to the hydroelectric power plans. Radiocarbon dated pollen diagrams from 9 different localities in Innerdalen provide information on a mountain environment which has been exploited to varying degrees by human groups for thousands of years. In the Birch Zone, ca. 9500-8500 years B.P., the deglaciated surface is vegetated by the normal sequence of pioneering species, first show-bed communities, then shrub/dwarf-shrub communities, and finally a birch forest community. In the Pine Zone, ca. 8500-7500 years B.P., the mixed Birch-Pine forest which prevailed at the end of the Birch Zone is replaced by a dense pine forest. The tree limit was higher than it is today. In the Alder Zone, ca. 7500-4000 years B.P., the newly arrived alder gradually succeeded pine, particularily on good soils. This alder forest has a modem analog in the pre-alpine gray alder forests in Norway. In the last part of the Alder Zone, ca. 6000-4000 years B.P., elm and hazel are nominally present on particularily rich soils, marking the edaphic and climatic optimum in Innerdalen. During this time the first evidence of human impact on the vegetation is apparent in the pollen diagrams. At both Sætersetra in the south of the valley and Liabekken in the north, forest clearance and the development of grazed grass meadows is documented, and human impact continues until the present. The Herb Zone, ca. 4000 years B.P. to 1600 A.D., is characterized by the rapid decline of alder. The forest is increasingly open, and bog formation is initiated. The sub-alpine belt of birch forest is established, probably due to the shift to a cooler, moister climate. Human activity can also have influenced the vegetational changes, although at 4 of the localities human activity also is first apparent after the alder decline. Some localities show measurably less human impact on the vegetation ca. 2600-2000 years B.P. Grazing intensity increases ca. 2000 years B.P. At the end of the Herb Zone rye and barley pollen is registered at Sætersetra and Flonan, indicating contact between the grazing activities of Innerdal and grain cultivation activities outside the valley. The Spruce Zone, ca. 1600 A.D. to the present, does not begin synchronously since the presence of long-distance transported spruce pollen at a locality is entirely dependent on the density of the vegetation ie. degree of human impact. The youngest spruce rise is ca. 1500 A.D. at Røstvangen, when summerfarming is initiated. Summerfarming activities in Innerdal produce an increasingly open landscape. Rye and barley pollen at several localities may indicate limited local cultivation, but is more likely long-distance transport via humans and domesticated animals from cultivated areas outside Innerdalen.