649 resultados para Plasminogen activators


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fetal membranes consist of 10 distinct layers including components of amnion, chorion and decidua, the latter being of maternal origin. They form mechanically integrated sheets capable of retaining amniotic fluid and play an essential role in protecting fetal growth and development in the pregnant uterus. The extracellular matrix, substrate for plasminogen activators (PAs), is an important supportive framework of the fetal membranes. :Fetal membranes from women with preterm premature rupture of membranes may differ in their protease activity compared with normal membranes. To identify the presence of PAs and their inhibitors (PAI) and their possible role in the process of fetal membrane rupture, this study in investigated the distribution and localization of both protein and mRNA for tissue (t) and urokinase (u) PA and their inhibitors type 1 (PAI-1) and type 2 (PAI-2) in amniochorion of human and rhesus monkey using conventional and. confocal immunofluorescence microscopy. In situ hybridization analysis showed that the distribution and localization of mRNAs for tPA, uPA, PAI-I and PAI-2 were similar in the fetal membranes of human and rhesus monkey; no obvious species difference was observed. Evidence of tPA mRNA was detected in amniotic epithelium, trophoblast cells and nearly all cells of the decidual layer. Strong expression of uPA mRNA was noted in the decidual cells which increased in intensity as the abscission point was approached. Weak staining in chorion laeve trophoblast was also detected. In situ hybridization experiments showed PAI-1 mRNA to be concentrated mainly in the decidual cells, some of which were interposed into the maternal-facing edge of the chorion laeve. Maximal labelling of the decidua occurred towards the zone of abscission. Weak expression of PAI-1 mRNA nas also noted in some cells of the chorion laeve. The distribution of PAI-2 mRNA in amniochorion was also concentrated in the cells of the decidual layer, maximum expression of the mRNA was in the level of abscission. No detectable amount of mRNAs for tPA, uPA, PAI-1 and PAI-2 was found in the fibroblast, reticular and spongy layers. Distribution of the proteins of tPA, uPA and PAI-1 in the fetal membranes of these two species was consistent with the distribution of their mRNA. Anti-PAI-2 immunofluorescence was found to be strongly concentrated in the amniotic epithelium, but PAI-2 mRNA was negative in this layer, suggesting that the epithelium-associated PAI-2 is not of epithelial origin. These findings suggest that a local fibrinolysis in fetal membranes generated by precisely balanced expression of PAs and their inhibitors via paracrine or autocrine mechanisms may play an essential role in fetal membrane development, maturation and in membrane rupture. Following an analysis of the distribution and synthesis of activators and inhibitors it was found that they may play a role in abscission during the third stage of labour. (C) 1998 W. B. Saunders Company Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutant urokinase-type plasminogen activator (u-PA) genes and hybrid genes between tissue-type plasminogen activator (t-PA) and u-Pa have been designed to direct the synthesis of new plasminogen activators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular matrix remodeling occurs during ovarian follicular development, mediated by plasminogen activators (PAs) and PA inhibitors including protease nexin-1 (PN-1). In the present study we measured expression/activity of the PA system in bovine follicles at different stages of development by timed collection of ovaries during the first follicular wave and during the periovulatory period, and in follicles collected from an abattoir. The abundance of mRNA encoding PN-1, tissue-type PA (tPA), urokinase (uPA) and PA inhibitor-1 (PAI-1) were initially upregulated by human chorionic gonadotropin (hCG) in bovine preovulatory follicular wall homogenates. PN-1, PAI-1 and tPA mRNA expression then decreased near the expected time of ovulation, whereas uPA mRNA levels remained high. PN-1 concentration in follicular fluid (FF) decreased and reached the lowest level at the time of ovulation, whereas plasmin activity in FF increased significantly after hCG. Follicles collected from the abattoir were classified as non-atretic, early-atretic or atretic based on FF estradiol and progesterone content: PN-1 protein levels in FF were significantly higher in non-atretic than in atretic follicles, and plasmin activity was correspondingly higher in the atretic follicles. No changes in PN-1 levels in FF were observed during the growth of pre-deviation follicles early in a follicular wave. These results indicate that PN-1 may be involved in the process of atresia in non-ovulatory dominant follicles and the prevention of precocious proteolysis in periovulatory follicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several lines of indirect evidence suggest that plasminogen activation plays a crucial role in degradation of the follicular wall during ovulation. However, single-deficient mice lacking tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA), or PA inhibitor type 1(PAI-1) gene function were recently found to have normal reproduction, although mice with a combined deficiency of tPA and uPA were significantly less fertile. To investigate whether the reduced fertility of mice lacking PA gene function is due to a reduced ovulation mechanism, we have determined the ovulation efficiency in 25-day-old mice during gonadotropin-induced ovulation. Our results reveal that ovulation efficiency is normal in mice with a single deficiency of tPA or uPA but reduced by 26% in mice lacking both physiological PAs. This result suggests that plasminogen activation plays a role in ovulatory response, although neither tPA nor uPA individually or in combination is obligatory for ovulation. The loss of an individual PA seems to be functionally complemented by the remaining PA but this compensation does not appear to involve any compensatory up-regulation. Our data imply that a functionally redundant mechanism for plasmin formation operates during gonadotropin-induced ovulation and that PAs together with other proteases generate the proteolytic activity required for follicular wall degradation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using both human and murine cell lines, we show that malignant cells are able to invade through basement membrane and also secrete elevated amounts of collagenase IV, an enzyme implicated in the degradation of basement membranes. Using serine proteinase inhibitors and antibodies to plasminogen activators as well as a newly described collagenase inhibitor we demonstrate that a protease cascade leads to the activation of an enzyme(s) that cleaves collagen IV. Inhibition at each step reduces the invasion of the tumor cells through reconstituted basement membrane in vitro. Treatment with a collagenase inhibitor reduced the incidence of lung lesions in mice given i.v. injections of malignant melanoma cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Changes of plasminogen activators (PA) during different stages of development of the corpus luteum, and their possible physiological role in luteolysis were studied in rhesus monkeys. It was demonstrated for the first time that monkey corpus luteal cells not only produce PA, but that the function of the corpus luteum is also closely related to the activity of this enzyme system. Generally, the life span for a corpus luteum in monkey is approximately 14-16 days, its demise beginning thereafter. In the present study, we found that urokinase in the corpus luteum is higher on day 5 and day 10 after human chorionic gonadotrophin injection, while the tissue type (t) PA is mainly produced on day 13 when luteolysis may take place. Progesterone production remained high on day 5 and day 10 and decreased dramatically from day 13, indicating the important role of tPA but not urokinase (u) PA in suppressing luteal function. When purified tPA (but not uPA) monoclonal antibody was added to luteal cell culture to neutralize endogenously produced tPA activity, progesterone production in the cells was increased significantly. Interestingly, prolactin alone was capable of increasing PA production by luteal cells; prolactin together with luteinizing hormone, however, had a synergistic luteotrophic effect.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fibrinolysis is a basic defense mechanism of the organism designed to control the deposition of fibrin in the vascular system and elsewhere. Fibrinolytic activity was measured by the fibrin plate method for three groups of rats (N = 6) that were maintained at room temperature, 20-25 degrees C, 3 degrees C or 38 degrees C for 4 h before testing. Based on measurement of fibrinolytic activity, the level of plasminogen activator released from isolated aortic segments of rats maintained at room temperature (24-28 degrees C) differed significantly from that of the 38 degrees C group. The animals maintained at 3 degrees C did not release plasminogen activator, suggesting that the fibrinolytic response was impaired at low temperature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND The use of prolyl hydroxylase inhibitors such as l-mimosine (L-MIM) and dimethyloxaloylglycine (DMOG) to improve angiogenesis is a new approach for periodontal regeneration. In addition to exhibiting pro-angiogenic effects, prolyl hydroxylase inhibitors can modulate the plasminogen activator system in cells from non-oral tissues. This study assesses the effect of prolyl hydroxylase inhibitors on plasminogen activation by fibroblasts from the periodontium. METHODS Gingival and periodontal ligament fibroblasts were incubated with L-MIM and DMOG. To investigate whether prolyl hydroxylase inhibitors modulate the net plasminogen activation, kinetic assays were performed with and without interleukin (IL)-1. Moreover, plasminogen activators and the respective inhibitors were analyzed by casein zymography, immune assays, and quantitative polymerase chain reaction. RESULTS The kinetic assay showed that L-MIM and DMOG reduced plasminogen activation under basal and IL-1-stimulated conditions. Casein zymography revealed that the effect of L-MIM involves a decrease in urokinase-type plasminogen activator activity. In agreement with these findings, reduced levels of urokinase-type plasminogen activator and elevated levels of plasminogen activator inhibitor 1 were observed. CONCLUSION L-MIM and DMOG can reduce plasminogen activation by fibroblasts from the gingiva and the periodontal ligament under basal conditions and in the presence of an inflammatory cytokine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Angiostatin, a potent naturally occurring inhibitor of angiogenesis and growth of tumor metastases, is generated by cancer-mediated proteolysis of plasminogen. Human prostate carcinoma cells (PC-3) release enzymatic activity that converts plasminogen to angiostatin. We have now identified two components released by PC-3 cells, urokinase (uPA) and free sulfhydryl donors (FSDs), that are sufficient for angiostatin generation. Furthermore, in a defined cell-free system, plasminogen activators [uPA, tissue-type plasminogen activator (tPA), or streptokinase], in combination with one of a series of FSDs (N-acetyl-l-cysteine, d-penicillamine, captopril, l-cysteine, or reduced glutathione] generate angiostatin from plasminogen. An essential role of plasmin catalytic activity for angiostatin generation was identified by using recombinant mutant plasminogens as substrates. The wild-type recombinant plasminogen was converted to angiostatin in the setting of uPA/FSD; however, a plasminogen activation site mutant and a catalytically inactive mutant failed to generate angiostatin. Cell-free derived angiostatin inhibited angiogenesis in vitro and in vivo and suppressed the growth of Lewis lung carcinoma metastases. These findings define a direct mechanism for cancer-cell-mediated angiostatin generation and permit large-scale production of bioactive angiostatin for investigation and potential therapeutic application.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The availability of gene-targeted mice deficient in the urokinase-type plasminogen activator (uPA), urokinase receptor (uPAR), tissue-type plasminogen activator (tPA), and plasminogen permits a critical, genetic-based analysis of the physiological and pathological roles of the two mammalian plasminogen activators. We report a comparative study of animals with individual and combined deficits in uPAR and tPA and show that these proteins are complementary fibrinolytic factors in mice. Sinusoidal fibrin deposits are found within the livers of nearly all adult mice examined with a dual deficiency in uPAR and tPA, whereas fibrin deposits are never found in livers collected from animals lacking uPAR and rarely detected in animals lacking tPA alone. This is the first demonstration that uPAR has a physiological role in fibrinolysis. However, uPAR-/-/tPA-/- mice do not develop the pervasive, multi-organ fibrin deposits, severe tissue damage, reduced fertility, and high morbidity and mortality observed in mice with a combined deficiency in tPA and the uPAR ligand, uPA. Furthermore, uPAR-/-/tPA-/- mice do not exhibit the profound impairment in wound repair seen in uPA-/-/tPA-/- mice when they are challenged with a full-thickness skin incision. These results indicate that plasminogen activation focused at the cell surface by uPAR is important in fibrin surveillance in the liver, but that uPA supplies sufficient fibrinolytic potential to clear fibrin deposits from most tissues and support wound healing without the benefit of either uPAR or tPA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial surface-associated proteins are important in communication with the environment and bacteria-host interactions. In this thesis work, surface molecules of Lactobacillus crispatus important in host interaction were studied. The L. crispatus strains of the study were known from previous studies to be efficient in adhesion to intestinal tract and ECM. L. crispatus JCM 5810 possess an adhesive surface layer (S-layer) protein, whose functions and domain structure was characterized. We cloned two S-layer protein genes (cbsA; collagen-binding S-layer protein A and silent cbsB) and identified the protein region in CbsA important for adhesion to host tissues, for polymerization into a periodic layer as well as for attachment to the bacterial cell surface. The analysis was done by extensive mutation analysis and by testing His6-tagged fusion proteins from recombinant Escherichia coli as well as by expressing truncated CbsA peptides on the surface of Lactobacillus casei. The N-terminal region (31-274) of CbsA showed efficient and specific binding to collagens, laminin and extracellular matrix on tissue sections of chicken intestine. The N-terminal region also contained the information for formation of periodic S-layer polymer. This region is bordered at both ends by a conserved short region rich in valines, whose substitution to leucines drastically affected the periodic polymer structure. The mutated CbsA proteins that failed to form a periodic polymer, did not bind collagens, which indicates that the polymerized structure of CbsA is needed for collagen-binding ability. The C-terminal region, which is highly identical in S-layer proteins of L. crispatus, Lactobacillus acidophilus and Lactobacillus helveticus, was shown to anchor the protein to the bacterial cell wall. The C-terminal CbsA peptide specifically bound to bacterial teichoic acid and lipoteichoic acids. In conclusion, the N-terminal domain of the S-layer protein of L. crispatus is important for polymerization and adhesion to host tissues, whereas the C-terminal domain anchors the protein to bacterial cell-wall teichoic acids. Lactobacilli are fermentative organisms that effectively lower the surrounding pH. While this study was in progress, plasminogen-binding proteins enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were identified in the extracellular proteome of L. crispatus ST1. In this work, the cell-wall association of enolase and GAPDH were shown to rely on pH-reversible binding to the cell-wall lipoteichoic acids. Enolase from L. crispatus was functionally compared with enolase from L. johnsonii as well as from pathogenic streptococci (Streptococcus pneumoniae, Streptococcus pyogenes) and Staphylococcus aureus. His6-enolases from commensal lactobacilli bound human plasminogen and enhanced its activation by human plasminogen activators similarly to, or even better than, the enolases from pathogens. Similarly, the His6-enolases from lactobacilli exhibited adhesive characteristics previously assigned to pathogens. The results call for more detailed analyses of the role of the host plasminogen system in bacterial pathogenesis and commensalism as well of the biological role and potential health risk of the extracellular proteome in lactobacilli.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vampire bats are notorious for being the sole mammals that strictly feed on fresh blood for their survival. While their saliva has been historically associated with anticoagulants, only one antihemostatic (plasminogen activator) has been molecularly and functionally characterized. Here, RNAs from both principal and accessory submaxillary (submandibular) salivary glands of Desmodus rotundus were extracted, and ~. 200. million reads were sequenced by Illumina. The principal gland was enriched with plasminogen activators with fibrinolytic properties, members of lipocalin and secretoglobin families, which bind prohemostatic prostaglandins, and endonucleases, which cleave neutrophil-derived procoagulant NETs. Anticoagulant (tissue factor pathway inhibitor, TFPI), vasodilators (PACAP and C-natriuretic peptide), and metalloproteases (ADAMTS-1) were also abundantly expressed. Members of the TSG-6 (anti-inflammatory), antigen 5/CRISP, and CCL28-like (antimicrobial) protein families were also sequenced. Apyrases (which remove platelet agonist ADP), phosphatases (which degrade procoagulant polyphosphates), and sphingomyelinase were found at lower transcriptional levels. Accessory glands were enriched with antimicrobials (lysozyme, defensin, lactotransferrin) and protease inhibitors (TIL-domain, cystatin, Kazal). Mucins, heme-oxygenase, and IgG chains were present in both glands. Proteome analysis by nano LC-MS/MS confirmed that several transcripts are expressed in the glands. The database presented herein is accessible online at http://exon.niaid.nih.gov/transcriptome/D_rotundus/Supplemental-web.xlsx. These results reveal that bat saliva emerges as a novel source of modulators of vascular biology. Biological significance: Vampire bat saliva emerges as a novel source of antihemostatics which modulate several aspects of vascular biology. © 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The plasmin-antiplasmin system plays a key role in blood coagulation and fibrinolysis. Plasmin and (2)-antiplasmin are primarily responsible for a controlled and regulated dissolution of the fibrin polymers into soluble fragments. However, besides plasmin(ogen) and (2)-antiplasmin the system contains a series of specific activators and inhibitors. The main physiological activators of plasminogen are tissue-type plasminogen activator, which is mainly involved in the dissolution of the fibrin polymers by plasmin, and urokinase-type plasminogen activator, which is primarily responsible for the generation of plasmin activity in the intercellular space. Both activators are multidomain serine proteases. Besides the main physiological inhibitor (2)-antiplasmin, the plasmin-antiplasmin system is also regulated by the general protease inhibitor (2)-macroglobulin, a member of the protease inhibitor I39 family. The activity of the plasminogen activators is primarily regulated by the plasminogen activator inhibitors 1 and 2, members of the serine protease inhibitor superfamily.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Activated factor XIII (FXIIIa), a transglutaminase, introduces fibrin-fibrin and fibrin-inhibitor cross-links, resulting in more mechanically stable clots. The impact of cross-linking on resistance to fibrinolysis has proved challenging to evaluate quantitatively. Methods: We used a whole blood model thrombus system to characterize the role of cross-linking in resistance to fibrinolytic degradation. Model thrombi, which mimic arterial thrombi formed in vivo, were prepared with incorporated fluorescently labeled fibrinogen, in order to allow quantification of fibrinolysis as released fluorescence units per minute. Results: A site-specific inhibitor of transglutaminases, added to blood from normal donors, yielded model thrombi that lysed more easily, either spontaneously or by plasminogen activators. This was observed both in the cell/platelet-rich head and fibrin-rich tail. Model thrombi from an FXIII-deficient patient lysed more quickly than normal thrombi; replacement therapy with FXIII concentrate normalized lysis. In vitro addition of purified FXIII to the patient's preprophylaxis blood, but not to normal control blood, resulted in more stable thrombi, indicating no further efficacy of supraphysiologic FXIII. However, addition of tissue transglutaminase, which is synthesized by endothelial cells, generated thrombi that were more resistant to fibrinolysis; this may stabilize mural thrombi in vivo. Conclusions: Model thrombi formed under flow, even those prepared as plasma 'thrombi', reveal the effect of FXIII on fibrinolysis. Although very low levels of FXIII are known to produce mechanical clot stability, and to achieve ?-dimerization, they appear to be suboptimal in conferring full resistance to fibrinolysis.