993 resultados para Plasmid vector, CHH1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

About 80 years ago, the neurosecretory eyestalk structures and their role in endocrine regulation was recognized in crustaceans. After the recognition it took half a century to identify the first peptide hormone. Till date a large number of homologous peptides of crustacean hyperglycaemic hormone and moult-inhibiting hormone have been identified, consequently they are called the CHH family hormones. This family comprises of highly multifunctional peptides which according to sequences and precursor structures can be divided into two subfamilies, type-I (CHH/ITP) and II (MIH, MOIH, VIH/GIH) (Webster et al., 2012). The XO-SG complex has been the major site of the two subfamilies. The advent of molecular techniques resulted in the characterization of different precursors of CHH, MIH and GIH; these hormones consist of a signal peptide, but only the preprohormone of CHHs contain a precursor- related peptide (CPRP) located between the signal and the mature hormone (Weidemann et al., 1989; Klein et al., 1993b; De Kleijn and Van Herp, 1995). The essentialities of the gene structure comply with the functions of the CHH family hormones. The CHH family hormone functions are inhibitory as well as stimulatory in the process of reproduction and maturation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic transformation systems have been established for Brassica nigra (cv. IC 257) by using an Agrobacterium binary vector as well as by direct DNA uptake of a plasmid vector. Both the type of vectors carried nptII gene and gus gene. For Agrobacterium mediated transformation, hypocotyl tissue explants were used, and up to 33% of the explants produced calli on selection medium. All of these expressed B-glucuronidase gene on histochemical staining. Protoplasts isolated from hypocotyl tissues of seedlings could be transformed with a plasmid vector by FEG mediated uptake of vector DNA. A number of fertile kanamycin resistant plants were obtained using both the methods, and their transformed nature was confirmed by Southern blot analysis and histochemical staining for GUS. Backcrossed and selfed progenies of these transformed plants showed the presence of npt and gus genes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Although plasmid DNA encoding an antigen from pathogens or tumor cells has been widely studied as vaccine, the use of plasmid vector (without insert) as therapeutic agent requires further investigation. Results: Here, we showed that plasmid DNA (pcDNA3) at low doses inhibits the production of IL-6 and TNF-alpha by lipopolysaccharide (LPS)-stimulated macrophage cell line J774. These findings led us to evaluate whether plasmid DNA could act as an anti-inflammatory agent in a Wistar rat endotoxemia model. Rats injected simultaneously with 1.5 mg/kg of LPS and 10 or 20 mu g of plasmid DNA had a remarkable attenuation of mean arterial blood pressure (MAP) drop at 2 hours after treatment when compared with rats injected with LPS only. The beneficial effect of the plasmid DNA on MAP was associated with decreased expression of IL-6 in liver and increased concentration of plasma vasopressin (AVP), a known vasoconstrictor that has been investigated in hemorrhagic shock management. No difference was observed in relation to nitric oxide (NO) production. Conclusion: Our results demonstrate for the first time that plasmid DNA vector at low doses presents anti-inflammatory property and constitutes a novel approach with therapeutic potential in inflammatory diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In plant cells, DICER-LIKE4 processes perfectly double-stranded RNA (dsRNA) into short interfering (si) RNAs, and DICER-LIKE1 generates micro (mi) RNAs from primary miRNA transcripts (pri-miRNA) that form fold-back structures of imperfectly dsRNA. Both si and miRNAs direct the endogenous endonuclease, ARGONAUTE1 to cleave complementary target single-stranded RNAs and either small RNA (sRNA)-directed pathway can be harnessed to silence genes in plants. A routine way of inducing and directing RNA silencing by siRNAs is to express self-complementary single-stranded hairpin RNA (hpRNA), in which the duplexed region has the same sequence as part of the target gene's mRNA. Artificial miRNA (amiRNA)-mediated silencing uses an endogenous pri-miRNA, in which the original miRNA/miRNA* sequence has been replaced with a sequence complementary to the new target gene. In this chapter, we describe the plasmid vector systems routinely used by our research group for the generation of either hpRNA-derived siRNAs or amiRNAs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, we inserted the plasmid vector pKK233-2 containing rat GSH S-transferase (GST) 5-5 cDNA into Salmonella typhimurium TA1535 and found that these bacteria [GST 5-5(+)] expressed the protein and produced mutations when ethylene or methylene dihalides were added [Thier, R., Taylor, J. B., Pemble, S. E., Ketterer, B., Persmark, M., Humphreys, W. G., and Guengerich, F. P. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 8576-8580]. After exposure to the known GST 5-5 substrate 1,2-epoxy-3-(4′-nitrophenoxy)propane, the GST 5-5(+) strain showed fewer mutants than the bacteria transfected with the cDNA clone in a reverse orientation [GST 5-5(-)], suggesting a protective role of GST 5-5. However, mutations were considerably enhanced in the GST 5-5(+) strain [as compared to GST 5-5(-)] when 1,2,3,4-diepoxybutane (butadiene diepoxide) or 1,2-epoxy-4-bromobutane was added. The GST 5-5(+) and GST 5-5(-) bacterial stains showed similar responses to 1,2-epoxypropane, 3,4-epoxy-1-butene, and 1,4-dibromobutane. The results suggest that some bifunctional activated butanes are transformed to mutagenic products through GSH conjugation. We also found that the GST 5-5(+) strain showed enhanced mutagenicity with 1,4-dibromo-2,3-epoxybutane, 1,2-epoxy-3-bromopropane (epibromohydrin), and (±)-1,4-dibromo-2,3-dihydroxybutane. The possibility was considered that a 5-membered thialonium ion may be involved in the mutagenicity. Model thialonium compounds were rather stable to hydrolysis in aqueous solution at pH 7.4 and slowly alkylated 4-(4-nitrobenzyl)pyridine. The presence of a hydroxyl group β to the sulfur did not enhance reactivity. Mechanisms involving episulfonium ions are considered more likely. Potential oxidation products of the toxic pesticide 1,2-dibromo-3-chloropropane (DBCP) were also considered in this system. DBCP itself gave rather similar results in the two strains. Others have reported that oxidation of DBCP is required for mutagenicity, along with GST-catalyzed GSH conjugation [Simula, T. P., Glancey, M. J., Söderlund, E. J., Dybing, E., and Wolf, C. R. (1993) Carcinogenesis 14, 2303-2307]. The putative oxidation product 1,2-dibromopropional did not show a difference between the two strains. However, 1,3-dichloroacetone, a model for the putative oxidation product 1-bromo-3-chloroacetone, was considerably more mutagenic in the GST 5-5(+) strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dihalomethanes can produce liver tumors in mice but not in rats, and concern exists about the risk of these compounds to humans. Glutathione (GSH) conjugation of dihalomethanes has been considered to be a critical event in the bioactivation process, and risk assessment is based upon this premise; however, there is little experimental support for this view or information about the basis of genotoxicity. A plasmid vector containing rat GSH S-transferase 5-5 was transfected into the Salmonella typhimurium tester strain TA1535, which then produced active enzyme. The transfected bacteria produced base-pair revertants in the presence of ethylene dihalides or dihalomethanes, in the order CH2Br2 > CH2BrCl > CH2Cl2. However, revertants were not seen when cells were exposed to GSH, CH2Br2, and an amount of purified GSH S-transferase 5-5 (20-fold excess in amount of that expressed within the cells). HCHO, which is an end product of the reaction of GSH with dihalomethanes, also did not produce mutations. S-(1-Acetoxymethyl)GSH was prepared as an analog of the putative S-(1-halomethyl)GSH reactive intermediates. This analog did not produce revertants, consistent with the view that activation of dihalomethanes must occur within the bacteria to cause genetic damage, presenting a model to be considered in studies with mammalian cells. S-(1-Acetoxymethyl)GSH reacted with 2′-deoxyguanosine to yield a major adduct, identified as S-[1-(N2-deoxyguanosinyl)methyl]GSH. Demonstration of the activation of dihalomethanes by this mammalian GSH S-transferase theta class enzyme should be of use in evaluating the risk of these chemicals, particularly in light of reports of the polymorphic expression of a similar activity in humans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nucleic acid molecules are championing a new generation of reverse engineered biopharmaceuticals. In terms of potential application in gene medicine, plasmid DNA (pDNA) vectors have exceptional therapeutic and immunological profiles as they are free from safety concerns associated with viral vectors, display non-toxicity and are simpler to develop. This review addresses the potential applications of pDNA molecules in vaccine design/development and gene therapy via recombinant DNA technology as well as a staged delivery mechanism for the introduction of plasmid-borne gene to target cells via the nasal route.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

THE rapid development of recombinant DNA technology has brought forth a revolution in biology'>", it aids us to have a closer look at the 'way genes are organized, eS11 ecially in the complex eucaryotic genornes'<", Although many animal and yeast genes have been studied in detail using recombinant DNA technology, plant genes have seldom been targets for such studie., Germination is an ideal process to study gene expression .because it effects a . shift in the metabolic status of seeds from a state of 'dormancy to an active one. AJ;l understanding of gene organization and regulation darin.g germination can be accomplblted by molecular cloning of DNA from seeds lik.e rice. To study the status of histone, rRNA tRNA and other genes in the rice genome, a general method was developed to clone eucarvotic DNA in a' plasmid vector pBR 322. This essentially ~ involves the following steps. The rice embryo and plasmid pBR 322 DNAs were cut witll restriction endonuclease Bam Hi to generate stick.Y ends, The plasmid DNA was puosphatased, the DNA~ ware a~·tnealed and joined 'by T4 phage DNA ligase. The recombinant DNA molecules thus produced were transjerred into E. coli and colonies containing them Were selected by their sensitivity to tetracycline and resistance to ampicillin, Two clones were identified . 2S haVing tRNA genes by hybridization of the DNA in the clones \vitl1 32P-la.belled rice tRNAs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

人类的载脂蛋白A5(apolipoprotein A5,APOA5)是一个新近发现的载脂蛋白家族成员。它在血浆中的含量比其他载脂蛋白低1-2个数量级,但能显著影响血浆三酰甘油水平,对血脂代谢具有重要意义,可以作为降血脂药物治疗中一个强有力的潜在靶标。 由于APOA5在血浆中含量低,直接从血浆中分离纯化很困难,国内一直没有报道简易可靠的纯化方法。为进一步研究APOA5的生物学特性,探讨其与TG代谢中的其它关键成分之间的相互关系,揭示其在脂类代谢相关疾病中的重要地位,必须有大量的蛋白和抗体用于基础研究。因此本研究首先利用基因工程技术,诱导表达纯化APOA5蛋白,免疫动物制备多克隆抗体,为进一步研究人肝脏细胞中APOA5的相互作用蛋白,研究APOA5蛋白在肝脏细胞中的功能奠定基础。 为了深入研究APOA5在肝脏中如何行使功能,我们采用细菌双杂交技术寻找与APOA5相互作用的蛋白因子。并采用Pull-down技术,免疫荧光及免疫共沉淀技术进一步确证其在体外和体内的相互作用关系,为进一步阐明APOA5在体内的生理功能提供了新的线索。 第一部分 APOA5基因的克隆、原核表达、纯化及其多克隆抗体的制备 本研究首先应用基因克隆技术,从人肝癌细胞系SMMC-7721的cDNA中扩增出1.1 kb的ApoA5基因全长序列。然后将其克隆至表达载体pThioHisD,构建原核表达载体pTH-APOA5。该重组质粒转化至大肠杆菌 BL21(DE3),成功实现人APOA5融合蛋白在大肠杆菌中的表达。经发酵得到高效表达的融合蛋白。 融合蛋白在 IPGT 诱导下以包涵体的形式大量表达。利用融合蛋白上的一段组氨酸序列,用镍离子亲和柱进行纯化和复性后,获得较高纯度的人APOA5融合蛋白。利用该融合蛋白免疫新西兰大耳白兔,获得了高效价的兔抗人APOA5多克隆抗体,Western Blot结果显示此多克隆抗体与APOA5特异性结合。 第二部分 细菌双杂交筛选与APOA5相互作用的蛋白 本实验首先构建了pBT-APOA5重组质粒,经双酶切、PCR和测序鉴定证明重组诱饵质粒构建成功,并进行了表达、自激活鉴定。Western Blot鉴定证实报告菌株中表达了分子量为 68 kD左右的重组融合蛋白,与预测的分子量APOA5(41 kD)/lamda cI (27 kD)一致。自激活实验证明诱饵蛋白不能单独激活报告基因,可用于筛选人肝脏cDNA文库。经过双重抗性筛选和回复筛选,分离出10个阳性克隆。对结果进行生物信息学分析,得到7个与APOA5相互作用的蛋白,其中BI1为细胞凋亡调节因子;ATP6、CYTB、ND2、COX-1为线粒体表达蛋白; ALB、TTR为血清蛋白。 第三部分 APOA5与BI1相互作用的确证 首先构建了BI1的原核表达载体pGEX-5X-3-BI1,利用Pull-down实验检测了APOA5与BI1在体外具有相互作用。然后构建了BI1的真核表达载体pCDNA3.1-HA-BI1和APOA5的真核表达载体pCDNA3.1-APOA5,并验证其表达。通过免疫荧光细胞内共定位研究发现,靶蛋白APOA5主要分布于胞浆,与BI1在HEK293细胞有共定位,即APOA5与BI1存在相互作用的可能。最后利用免疫共沉淀手段,在HEK293细胞中确证了靶蛋白APOA5与BI1在体内的相互作用。 上述研究结果,为深入研究APOA5在体内的生物学功能提供了新的思路。 Apolipoprotein A5 (APOA5) is a newly discovered protein belongs to apolipoprotein family. APOA5’s concentration is 1-2 orders of magnitude lower than other apolipoproteins in the circulation. APOA5 significantly affected plasma triglyceride levels, which is important on lipid metabolism. APOA5 has strong potential to be used as a hypolipidemic drug target. Large amount of APOA5 protein and antibodies are needed in basic research, such as biological characteristics study of the APOA5, its relationship with other key components in TG metabolism, its role played in Lipid metabolism-related diseases. Due to its low concentration in plasma, separation and purification of APOA5 from the plasma is very difficult. Until now no report on simple and reliable method for purification has been published in China. In this study, we firstly got APOA5 recombinant protein using genetic engineering technology. The purified recombinant protein was used to immunize rabbits to get antiserum. It is important for further study of the APOA5 protein-interacting protein. And it lays the foundation for studing APOA5 function in liver. In order to study APOA5 function in liver, we used bacterial two-hybrid technology to find the APOA5 protein interactor. Pull-down, immunofluorescence and immunoprecipitation techniques were used to further confirm the interaction between APOA5 with its interactor in vitro and in vivo. All of these stdudies provided new clues on its physiological functions in vivo. Part I: Cloning, prokaryotic expression, purification and polyclonal antibody preparation of APOA5 First of all, we amplified APOA5 CDS sequence from the human hepatoma cell line SMMC-7721, and subcloned into Expression vector pThioHisD, and got the recombinants named pTH-APOA5. The plasmid was transformed to BL21 (DE3). E. coli BL21(DE3) cells bearing the pTH-APOA5 plasmid were cultured and APOA5 protein synthesis was induced by the addition of IPTG. Recombinant protein was expression in the form of inclusion. Inclusion bodies were dissolved in phosphate-buffered saline containing 8 M urea and 40 mM imidazole, then applied to a Ni2+ affinity column, and were eluted in a buffer containing 4 M urea and 200 mM imidazole. Fractions containing the APOA5 protein were pooled and dialyzed against buffer containing phosphate-buffered saline. Antiserum to recombinant human APOA5 was generated by immuning rabbit. Western Blot showed that this antiserum specific binding with APOA5. Part II Two-hybrid system screening protein interactions with the APOA5 The coding sequence of human APOA5 was amplified using synthetic oligonucleotide primers from pTH-APOA5 vector and was subcloned into the pBT plasmidc to yield pBT-APOA5 vector. DNA sequencing was performed to verify that no unwanted mutations occurred during the process of plasmid vector construction. We verified recombinant protein expression and tested self-activation by pBT-APOA5 prior to screening. Western Blot verified inducing a 68 kD band, consistent with the predicted molecular weight (APOA5 41 kD, lamda cI 27 kD). pBT-APOA5 can be used for screening human liver cDNA library because it can not self-activation. Totally 10 positive clones were isolated. The nucleotide sequence of the positive clones were determined and compared to NCBI nucleotide sequence databases. We got 7 protein which interact with APOA5, included BI1(Apoptosis regulator); ATP6, CYTB, ND2, COX-1(Mitochondrial protein) and ALB, TTR(Serum protein). Part III Confirming of interaction between APOA5 with BI1 pGEX-5X-3-BI1 vector was subcloned at first. Pull-down experiments were used to detect the interaction between APOA5 with BI1 in vitro. Later, pCDNA3.1-HA-BI1 and pCDNA3.1-APOA5 were subcloned. Through immunofluorescence co-localization study, we found APOA5 mainly distributed in the cytoplasm. APOA5 is co-localization with BI1 in HEK293 cells. Finally, we verified interaction between APOA5 with BI1 in vivo through immunoprecipitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transient expression in nonsteroidogenic mammalian cells of the rat wild type I and type II 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β- HSD) cDNAs shows that the encoded proteins, in addition to being able to catalyze the oxidation and isomerization of Δ5-3β-hydroxysteroid precursors into the corresponding Δ4-3-ketosteroids, interconvert 5α- dihydrotestosterone (DHT) and 5α-androstane-3β,17β-diol (3β-diol). When homogenate from cells transfected with a plasmid vector containing type I 3β-HSD is incubated in the presence of DHT using NAD+ as cofactor, a somewhat unexpected metabolite is formed, namely 5α-androstanedione (A- dione), thus indicating an intrinsic androgenic 17β-hydroxysteroid dehydrogenase (17β-HSD) activity of this 3β-HSD isoform. Although the relative Vmax of 17β-HSD activity is 14.9-fold lower than that of 3β-HSD activity, the Km value for the 17β-HSD activity of type I 3β-HSD is 7.97 μM, a value which is in the same range as the conversion of DHT into 3β- diol which shows a Km value of 4.02 μM. Interestingly, this 17β-HSD activity is highly predominant in unbroken cells in culture, thus supporting the physiological relevance of this 'secondary' activity. Such 17β-HSD activity is inhibited by the classical substrates of 3β-HSD, namely pregnenolone (PREG), dehydroepiandrosterone (DHEA), Δ5-androstene-3β,17β- diol (Δ5-diol), 5α-androstane-3β,17β-diol (3β-diol) and DHT, with IC50 values of 2.7, 1.0, 3.2, 6.2, and 6.3 μM, respectively. Although dual enzymatic activities have been previously reported for purified preparations of other steroidogenic enzymes, the present data demonstrate the multifunctional enzymatic activities associated with a recombinant oxidoreductase enzyme. In addition to its well known 3β-HSD activity, this enzyme possesses the ability to catalyze DHT into A-dione thus potentially controlling the level of the active androgen DHT in classical steroidogenic as well as peripheral intracrine tissues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We recently cloned biosynthesis genes for the O7-lipopolysaccharide (O7-LPS) side chain from the Escherichia coli K-1 strain VW187 (M. A. Valvano, and J. H. Crosa, Infect. Immun. 57:937-943, 1989). To characterize the O7-LPS region, the recombinant cosmids pJHCV31 and pJHCV32 were mutagenized by transposon mutagenesis with Tn3HoHo1, which carries a promoterless lac operon and can therefore generate lacZ transcriptional fusions with target DNA sequences. Cells containing mutated plasmids were examined for their ability to react by coagglutination with O7 antiserum. The LPS pattern profiles of the insertion mutants were also investigated by electrophoresis of cell envelope fractions, followed by silver staining and immunoblotting analysis. These experiments identified three phenotypic classes of mutants and defined a region in the cloned DNA of about 14 kilobase pairs that is essential for O7-LPS expression. Analysis of beta-galactosidase production by cells carrying plasmids with transposon insertions indicated that transcription occurs in only one direction along the O7-LPS region. In vitro transcription-translation experiments revealed that the O7-LPS region encodes at least 16 polypeptides with molecular masses ranging from 20 to 48 kilodaltons. Also, the O7-LPS region in VW187 was mutagenized by homologous recombination with subsets of the cloned O7-LPS genes subcloned into a suicide plasmid vector. O7-LPS-deficient mutants of VW187 were complemented with pJHCV31 and pJHCV32, confirming that these cosmids contain genetic information that is essential for the expression of the O7 polysaccharide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There has been broad concern that arsenic in the environment exerts neurotoxicity. To determine the mechanism by which arsenic disrupts neuronal development, primary cultured neurons obtained from the cerebral cortex of mouse embryos were exposed to sodium arsenite (NaAsO2) at concentrations between 0 and 2μM from days 2 to 4 in vitro and cell survival, neurite outgrowth and expression of glutamate AMPA receptor subunits were assessed at day 4 in vitro. Cell survival was significantly decreased by exposure to 2μM NaAsO2, whereas 0.5μM NaAsO2 increased cell survival instead. The assessment of neurite outgrowth showed that total neurite length was significantly suppressed by 1μM and 2μM NaAsO2, indicating that the lower concentration of NaAsO2 impairs neuritogenesis before inducing cell death. Immunoblot analysis of AMPA receptor subunit expression showed that the protein level of GluA1, a specific subunit of the AMPA receptor, was significantly decreased by 1μM and 2μM NaAsO2. When immunocytochemistry was used to confirm this effect by staining for GluA1 expression in neuropeptide Y neurons, most of which contain GluA1, GluA1 expression in neuropeptide Y neurons was found to be significantly suppressed by 1μM and 2μM NaAsO2 but to be increased at the concentration of 0.5μM. Finally, to determine whether neurons could be rescued from the NaAsO2-induced impairment of neuritogenesis by compensatory overexpression of GluA1, we used primary cultures of neurons transfected with a plasmid vector to overexpress either GluA1 or GluA2, and the results showed that GluA1/2 overexpression protected against the deleterious effects of NaAsO2 on neurite outgrowth. These results suggest that the NaAsO2 concentration inducing neurite suppression is lower than the concentration that induces cell death and is the same as the concentration that suppresses GluA1 expression. Consequently, the suppression of GluA1 expression by NaAsO2 seems at least partly responsible for neurite suppression induced by NaAsO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relative ease to concentrate and purify adenoviruses, their well characterized mid-sized genome, and the ability to delete non-essential regions from their genome to accommodate foreign gene, made adenoviruses a suitable candidate for the construction of vectors. The use of adenoviral vectors in gene therapy, vaccination, and as a general vector system for expressing foreign genes have been documented for some time. In this study, the objective was to rescue a BAV3 E1 or E3 recombinant vector carrying the kanamycin resistant gene, a dominant selectable marker with useful applications in studying vectored gene expression in mammalian cells. To accomplish the objective of this study, more information about BAV3 DNA sequences was required in order to make the manipulation of the virus genome accessible. Therefore, sequencing of the BAV3 genome from 1 1 .7% to 30.8% was carried out. Analysis of the determined sequences revealed the primary structure of important viral gene products coded by E2 including BAV3 DNA pol and precursor to terminal protein. Comparative analysis of these proteins with their counterparts from human and non human adenoviruses revealed important insights as to the evolutionary lineage of BAV3. In order to insert the kanamycin resistance gene in either E1 or E3, it was necessary to delete BAV3 sequences to accommodate the foreign gene so as not to exceed the limit of the packaging capacity of the virus. To construct a recombinant BAV3 in which a foreign gene was inserted in the deleted E1 region, an E1 shuttle vector was constructed. This involved the deletion from the viral sequences a region between 1.3% to 9% and inserting the kanamycin resistance gene to replace the deletion. The E1 shuttle vector contained the left (0%- 53.9%) segment of the genome and was expected to generate BAV3 recombinants that can be grown and propagated in cells that can complement the missing E1 functions. To construct a similar shuttle vector for E3 deletion, DNA sequences extending from 78.9% to 82.5% (1281 bp) were deleted from within the E3 region that had been cloned into a plasmid vector. The deleted region corresponds to those that have been shown to be non-essential for viral replication in cell culture. The resulting plasmid was used to construct another recombinant plasmid with BAV3 DNA sequences extending from 37.1% to 100% and with a deletion of E3 sequences that were replaced by kanamycin resistance gene. This shuttle plasmid was used in cotransfections with digested viral DNA in an attempt to rescue a recombinant BAV3 carrying the kanamycin resistance gene to replace the deleted E3. In spite of repeated attempts of transfection, El or E3 recombinant BAV3 were not isolated. It seems that other approaches should be applied to make a final conclusion on BAV3 infectivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The construction of adenovirus vectors for cloning and foreign gene expression requires packaging cell lines that can complement missing viral functions caused by sequence deletions and/or replacement with foreign DNA sequences. In this study, packaging cell lines were designed to provide in trans the missing bovine adenovirus functions, so that recombinant viruses could be generated. Fetal bovine kidney and lUng cells, acquired at the trimester term from a pregnant cow, were tranfected with both digested wild type BAV2 genomic DNA and pCMV-EI. The plasmid pCMV-EI was specifically constructed to express El of BAV2 under the control of the cytomegalovirus enhancer/promoter (CMV). Selection for "true" transformants by continuous passaging showed no success in isolating immortalised cells, since the cells underwent crisis resulting in complete cell death. Moreover, selection for G418 resistance, using the same cells, also did not result in the isolation of an immortalised cell line and the same culture-collapse event was observed. The lack of success in establishing an immortalised cell line from fetal tissue prompted us to transfect a pre-established cell line. We began by transfecting MDBK (Mardin-Dardy bovine kidney) cells with pCMV-El-neo, which contain the bacterial selectable marker neo gene. A series of MDBK-derived cell lines, that constitutively express bovine adenoviral (BAV) early region 1 (El), were then isolated. Cells selected for resistance to the drug G418 were isolated collectively for full characterisation to assess their suitability as packaging cell lines. Individual colonies were isolated by limiting dilution and further tested for El expression and efficiency of DNA uptake. Two cell lines, L-23 and L-24, out of 48 generated foci tested positive for £1 expression using Northern Blot analysis. DNA uptake studies, using both lipofectamine and calcium phosphate methods, were performed to compare these cells, their parental MDBK cells, 8 and the unrelated human 293 cells as a benchmark. The results revealed that the new MDBKderived clones were no more efficient than MDBK cells in the transient expression of transfected DNA and that they were inferior to 293 cells, when using lacZ as the reporter gene. In view of the inherently poor transfection efficiency of MDBK cells and their derivatives, a number of other bovine cells were investigated for their potential as packaging cells. The cell line CCL40 was chosen for its high efficiency in DNA uptake and subsequently transfected with the plasmid vector pCMV El-neo. By selection with the drug G418, two cell lines were isolated, ProCell 1 and ProCell 2. These cell lines were tested for El expression, permissivity to BAV2 and DNA uptake efficiency, revealing a DNA uptake efficiency of 37 % , comparable to that of CCL40. Attempts to rescue BAV2 mutants carrying the lacZ gene in place of £1 or £3 were carried out by co-transfecting wild type viral DNA with either the plasmid pdlElE-Z (which contains BAV2 sequences from 0% to 40.4% with the lacZ gene in place of the £1 region from 1.1% to 8.25%) or with the plasmid pdlE3-5-Z (which contains BAV2 sequences from 64.8% to 100% with the lacZ gene in place of the E3 region from 75.8% to 81.4%). These cotransfections did not result in the generation of a viral mutant. The lack of mutant generation was thought to be caused by the relative inefficiency ofDNA uptake. Consequently, cosBAV2, a cosmid vector carrying the BAV2 genome, was modified to carry the neo reporter gene in place of the £3 region from 75.8% to 81.4%. The use of a single cosmid vector earring the whole genome would eliminate the need for homologous recombination in order to generate a viral vector. Unfortunately, the transfection of cosBAV2- neo also did not result in the generation of a viral mutant. This may have been caused by the size of the £3 deletion, where excess sequences that are essential to the virus' survival might have been deleted. As an extension to this study, the spontaneous E3 deletion, accidently discovered in our viral stock, could be used as site of foreign gene insertion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adenoviruses are non-enveloped icosahedral-shaped particles which possess a double-stranded DNA genome. Currently, nearly 100 serotypes of adenoviruses have been identified, 48 of which are of human origin. Bovine adenoviruses (BAVs), causing both mild respiratory and/or enteral diseases in cattle, have been reported in many countries all over the world. Currently, nine serotypes of SAVs have been isolated which have been placed into two subgroups based on a number of characteristics which include complement fixation tests as well as the ability to replicate in various cell lines. Bovine adenovirus type 2 (BAV2), belonging to subgroup I, is able to cause pneumonia as well as pneumonic-like symptoms in calves. In this study, the genome of BAV2 (strain No. 19) was subcloned into the plasmid vector pUC19. In total, 16 plasmids were constructed; three carry internal San fragments (spanning 3.1 to 65.2% ), and 10 carry internal Pstl fragments (spanning 4.9 to 97.4%), of the viral genome. Each of these plasmids was analyzed using twelve restriction endonucleases; BamHI, CiaI, EcoRl, HiOOlll, Kpnl, Noll, NS(N, Ps~, Pvul, Saj, Xbal, and Xhol. Terminal end fragments were also cloned and analyzed, sUbsequent to the removal of the 5' terminal protein, in the form of 2 BamHI B fragments, cloned in opposite orientations (spanning 0 to 18.1°k), and one Pstll fragment (spanning 97.4 to 1000/0). These cloned fragments, along with two other plasmids previously constructed carrying internal EcoRI fragments (spanning 20.6 to 90.5%), were then used to construct a detailed physical restriction map using the twelve restriction endonucleases, as well as to estimate the size of the genome for BAV2(32.5 Kbp). The DNA sequences of the early region 1 (E1) and hexon-associated gene (protein IX) have also been determined. The amino acid sequences of four open reading frames (ORFs) have been compared to those of the E1 proteins and protein IX from other Ads.