1000 resultados para Plasma bubble
Resumo:
Equatorial F region vertical plasma drifts, spread F and anomaly responses, in the south American longitude sector during the superstorm of 30 October 2003, are analyzed using data from an array of instruments consisting of Digisondes, a VHF radar, GPS TEC and scintillation receivers in Brazil, and a Digisonde and a magnetometer in Jicamarca, Peru. Prompt penetrating eastward electric field of abnormally large intensity drove the F layer plasma up at a velocity ∼1200 ms -1 during post dusk hours in the eastern sector over Brazil. The equatorial anomaly was intensified and expanded poleward while the development of spread F/plasma bubble irregularities and GPS signal scintillations were weaker than their quiet time intensity. Significantly weaker F region response over Jicamarca presented a striking difference in the intensity of prompt penetration electric field between Peru and eastern longitudes of Brazil. The enhanced post dusk sector vertical drift over Brazil is attributed to electro-dynamics effects arising energetic particle precipitation in the South Atlantic Magnetic Anomaly (SAMA). These extraordinary results and their longitudinal differences are presented and discussed in this paper. Copyright 2008 by the American Geophysical Union.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Proton trapping and acceleration by an electron bubble-channel structure in laser interaction with high-density plasma is investigated by using three-dimensional particle-in-cell simulations. It is shown that protons can be trapped, bunched, and efficiently accelerated for appropriate laser and plasma parameters, and the proton acceleration is enhanced if the plasma consists mainly of heavier ions such as tritium. The observed results are analyzed and discussed in terms of a one-dimensional analytical three-component-plasma wake model.
Resumo:
The triggering of wave-breaking in a three-dimensional laser plasma wake (bubble) is investigated. The Coulomb potential from a nanowire is used to disturb the wake field to initialize the wave-breaking. The electron acceleration becomes more stable and the laser power needed for self-trapping is lowered. Three-dimensional particle-in-cell simulations were performed. Electrons with a charge of about 100 pC can be accelerated stably to energy about 170 MeV with a laser energy of 460 mJ. The first step towards tailoring the electron beam properties such as the energy, energy spread, and charge is discussed. (C) 2007 American Institute of Physics.
Resumo:
Boiling is an extremely complicated and illusive process. Microgravity experiments offer a unique opportunity to study the complex interactions without external forces, such as buoyancy, which can affect the bubble dynamics and the related heat transfer. Furthermore, they can also provide a means to study the actual influence of gravity on the boiling. Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments both in normal gravity and in short-term microgravity in the Drop Tower Beijing and numerical simulations have also been performed. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. It was found that the bubble dynamics in microgravity has a distinct difference from that in normal gravity, and that the heat transfer characteristic is depended upon the bubble dynamics. Lateral motions of bubbles on the heaters were observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drove it to detach from the heaters. Slight enhancement of heat transfer on wires is observed in microgravity, while diminution is evident for high heat flux in the plate case.
Resumo:
Theories and numerical modeling are fundamental tools for understanding, optimizing and designing present and future laser-plasma accelerators (LPAs). Laser evolution and plasma wave excitation in a LPA driven by a weakly relativistically intense, short-pulse laser propagating in a preformed parabolic plasma channel, is studied analytically in 3D including the effects of pulse steepening and energy depletion. At higher laser intensities, the process of electron self-injection in the nonlinear bubble wake regime is studied by means of fully self-consistent Particle-in-Cell simulations. Considering a non-evolving laser driver propagating with a prescribed velocity, the geometrical properties of the non-evolving bubble wake are studied. For a range of parameters of interest for laser plasma acceleration, The dependence of the threshold for self-injection in the non-evolving wake on laser intensity and wake velocity is characterized. Due to the nonlinear and complex nature of the Physics involved, computationally challenging numerical simulations are required to model laser-plasma accelerators operating at relativistic laser intensities. The numerical and computational optimizations, that combined in the codes INF&RNO and INF&RNO/quasi-static give the possibility to accurately model multi-GeV laser wakefield acceleration stages with present supercomputing architectures, are discussed. The PIC code jasmine, capable of efficiently running laser-plasma simulations on Graphics Processing Units (GPUs) clusters, is presented. GPUs deliver exceptional performance to PIC codes, but the core algorithms had to be redesigned for satisfying the constraints imposed by the intrinsic parallelism of the architecture. The simulation campaigns, run with the code jasmine for modeling the recent LPA experiments with the INFN-FLAME and CNR-ILIL laser systems, are also presented.
Resumo:
Uno dei maggiori obiettivi della ricerca nel campo degli acceleratori basati su interazione laser-plasma è la realizzazione di una sorgente compatta di raggi x impulsati al femtosecondo. L’interazione tra brevi impulsi laser e un plasma, a energie relativistiche, ha recentemente portato a una nuova generazione di sorgenti di raggi x con le proprietà desiderate. Queste sorgenti, basate sulla radiazione emessa da elettroni accelerati nel plasma, hanno in comune di essere compatte, produrre radiazione collimata, incoerente e impulsata al femtosecondo. In questa tesi vengono presentati alcuni metodi per ottenere raggi x da elettroni accelerati per interazione tra laser e plasma: la radiazione di betatrone da elettroni intrappolati e accelerati nel cosiddetto “bubble regime”, la radiazione di sincrotrone da elettroni posti in un ondulatore convenzionale con lunghezza dell’ordine dei metri e la radiazione ottenuta dal backscattering di Thomson. Vengono presentate: la fisica alla base di tali metodi, simulazioni numeriche e risultati sperimentali per ogni sorgente di raggi x. Infine, viene discussa una delle più promettenti applicazioni fornite dagli acceleratori basati su interazione tra laser e plasma: il Free-electron laser nello spettro dei raggi x, capace di fornire intensità 108-1010 volte più elevate rispetto alle altre sorgenti.