995 resultados para Plants - Effect of the moon on


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The effect of regulated deficit irrigation (RDI) on the phytoprostane (PhytoP) content in extra virgin olive (Olea europaea L., cv. Cornicabra) oil (EVOO) was studied. During the 2012 and 2013 seasons, T0 plants were irrigated at 100% ETc, while T1 and T2 plants were irrigated avoiding water deficit during phases I and III of fruit growth and saving water during the non-critical phenological period of pit hardening (phase II), developing amore severewater deficit in T2 plants. In 2013, a fourth treatment (T3) was also performed, which was similar to T2 except that water saving was from the beginning of phase II to 15 days after the end of phase II. RESULTS: 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, 9-epi-9-D1t-PhytoP, 9-D1t-PhytoP, 16-B1-PhytoP and 9-L1-PhytoP were present in Cornicabra EVOO, and their contents increased in the EVOO fromRDI plants. CONCLUSION: Deficit irrigation during pit hardening or for a further period of 2 weeks thereafter to increase irrigation water saving is clearly critical for EVOO composition because of the enhancement of free PhytoPs, which have potential beneficial effects on human health. The response of individual free PhytoPs to changes in plant water status was not as perceptible as expected, preventing their use as biomarkers of water stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present report investigates the role of formate species as potential reaction intermediates for the WGS reaction (CO + H2O -> CO2 + H-2) over a Pt-CeO2 catalyst. A combination of operando techniques, i.e., in situ diffuse reflectance FT-IR (DRIFT) spectroscopy and mass spectrometry (MS) during steady-state isotopic transient kinetic analysis (SSITKA), was used to relate the exchange of the reaction product CO2 to that of surface formate species. The data presented here suggest that a switchover from a non-formate to a formate-based mechanism could take place over a very narrow temperature range (as low as 60 K) over our Pt-CeO2 catalyst. This observation clearly stresses the need to avoid extrapolating conclusions to the case of results obtained under even slightly different experimental conditions. The occurrence of a low-temperature mechanism, possibly redox or Mars van Krevelen-like, that deactivates above 473 K because of ceria over-reduction is suggested as a possible explanation for the switchover, similarly to the case of the CO-NO reaction over Cu, I'd and Rh-CeZrOx (see Kaspar and co-workers [1-3]). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium alloys normally contain oxygen, nitrogen, or carbon as impurities, and although this concentration is low, these impurities cause changes in the mechanical properties of Ti alloys. Oxygen is a strong alpha-phase stabilizer and its addition causes solid-solution strengthening, shape memory effect, and superelasticity. The most promising alloys are those with Nb, Zr, Ta, and Mo as alloying elements. In this paper, the preparation, processing, and characterization of Ti-Mo alloys (5 and 10 wt%) used as biomaterials are presented, along with the influence of oxygen on their mechanical properties. The addition of oxygen causes an increase in the elasticity modulus of the Ti-5Mo alloy due to an increase in the alpha' phase volume fraction, which possesses a higher modulus than the alpha '' phase. Ti-10Mo possesses a mixture between alpha '' and beta phases, oxygen enters these two structures and causes a dominating effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of temperature on the oxalic acid catalyzed sono-hydrolysis of tetramethoxysilane (TMOS) was studied by means of a heat flux calorimetric method. The activation energy of the process was measured as (24.5 +/- 0.8) kJ/mol in the temperature range between 10 and 50 degreesC. The structural characteristics of the resulting sonogels, after long period of aging in saturated conditions, were studied by means of small angle X-ray scattering. The structure can be described as formed by similar to2.7 nm mean size mass fractal-like aggregates (clusters) of primary silica particles of similar to0.3 nm mean size, all imbibed in a liquid phase. The average mass fractal dimension of the clusters was found to be 2.58. The primary particle density was estimated as 2.23 g/cm(3), in good agreement with the value frequently quoted for fused silica. The volume fraction of the clusters, in the saturated sonogels was estimated as about 28%. The moment in which the meniscus of the liquid phase penetrates into the clusters under rapid evaporation process has been detected by an inflection in the first derivative of the curve of weight loss in a simple thermogravimetric test. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium stannate titanate Sr(Sn, Ti)O3 is a solid solution between strontium stannate (SrSnO3) and strontium titanate (SrTiO3). In the present study, it was synthesized at low temperature by the polymeric precursor method, derived from the Pechini process. The powders were calcined in oxygen atmosphere in order to eliminate organic matter and to decrease the amount of SrCO3 formed during the synthesis. The powders were annealed at different temperatures to crystallize the samples into perovskites-type structures. All the compositions were studied by thermogravimetry (TG) and differential thermal analysis (DTA), infrared spectroscopy (IR) and X-ray diffraction (XRD). The lattice former, Ti4+ and Sn4+, had a meaningful influence in the mass loss, without changing the profile of the TG curves. On the other hand, DTA curves were strongly modified with the Ti4+:Sn4+ proportion in the system indicating that intermediate compounds may be formed during the synthesis being eliminated at different temperature ranges, while SrCO3 elimination occurs at higher temperature as shown by XRD and IR spectra. © 2013 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CeO2 nanoparticles were synthesized by the precipitation method and modified with para-toluene sulfonic acid (PTSH), either in situ or post-synthesis. The presence of PTSH in the samples was confirmed by FTIR. PXRD and FTIR analyses showed that the post-synthesis PTSH modification altered the CeO2 structure, whereas the in situ modification maintained intact the crystalline structure and UV-vis absorbance properties. For both in situ and post-synthesis modifications, TEM images revealed the presence of nanoparticles that were 5nm in size. The dispersibility of the in situ PTSH-modified material in a hydrophilic ureasil-poly(ethylene oxide) matrix was investigated using SAXS measurements, which indicated that CeO2 nanoparticles modified with PTSH in situ were less aggregated within the matrix, compared to unmodified CeO2 nanoparticles. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New titanium alloys have been developed with the aim of utilizing materials with better properties for application as biomaterials, and Ti-Zr system alloys are among the more promising of these. In this paper, the influence of zirconium concentrations on the structure, microstructure, and selected mechanical properties of Ti-Zr alloys is analyzed. After melting and swaging, the samples were characterized through chemical analysis, density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, and elasticity modulus. In-vitro cytotoxicity tests were performed on cultured osteogenic cells. The results showed the formation essentially of the α′ phase (with hcp structure) and microhardness values greater than cp-Ti. The elasticity modulus of the alloys was sensitive to the zirconium concentrations while remaining within the range of values of conventional titanium alloys. The alloys presented no cytotoxic effects on osteoblastic cells in the studied conditions. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studio dell'effetto della duttilità sul carico di collasso: il crollo di una copertura reticolare spaziale in acciaio causato dalla compresenza di un'ingente mancanza di resistenza e duttilità nei collegamenti delle aste e possibili stati coattivi. Il carico di collasso nel caso di strutture a bassa duttilità dipende dalla presenza di stati coattivi dovuti a imperfezioni di realizzazione o cedimenti vincolari della struttura in esercizio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular interactions between the host molecule, perthiolated beta-cyclodextrin (CD), and the guest molecules, adamantaneacetic acid (AD) and ferroceneacetic acid (FC), have been inestigated theoretically in both the gas and aqueous phases. The major computations have been carried out at the theoretical levels, RHF/6-31G and B3LYP/6- 31G. MP2 electronic energies were also computed based at the geometries optimized by both the RHF and B3LYP methods in the gas phase to establish a better estimate of the correlation effect. The solvent phase computations were completed at the RHF/6-31G and B3LYP/6-31G levels using the PCM model. The most stable structures optimized in gas phase by both the RHF and B3LYP methods were used for the computations in solution. A method to systematically manipulate the relative position and orientation between the interacting molecules is proposed. In the gas phase, six trials with different host-guest relative positions and orientations were completed successfully with the B3LYP method for both the CD-AD and CD-FC complexes. Only four trials were completed with RHF method. In the gas phase, the best results from the RHF method gives for the association Gibbs free energy (ΔG°) values equal to -32.21kj/mol for CD-AD and -25.73kj/mol for CD-FC. And the best results from the B3LYP method have ΔG° equal to -47.57kj/mol for CD-AD and -41.09kj/mol for CD-FC. The MP2 correction significantly lowers ΔG° based on the geometries from both methods. For the RHF structure, the MP2 computations lowered ΔG° to -60.64kj/mol for CD-AD and -54.10 for CD-FC. For the structure from the B3LYP method, it was reduced to -59.87 kj/mol for CD-AD and -54.84 kj/mol for CDFC. The RHF solvent phase calculations yielded following results: ΔG°(aq) equals 107.2kj/mol for CD-AD and 111.4kj/mol for CD-FC. Compared with the results from the RHF method, the B3LYP method provided clearly better solvent phase results with ΔG° (aq) equal to 38.64kj/mol for CD-AD and 39.61kj/mol for CD-FC. These results qualitatively explain the experimental observations. However quantitatively they are in poor agreement with the experimental values available in the literature and those recently published by Liu et al. And the reason is believed to be omission of hydrophobic contribution to the association. Determining the global geometrical minima for these very large systems was very difficult and computationally time consuming, but after a very thorough search, these were identified. A relevant result of this search is that when the complexes, CD-AD and CD-FC, are formed, the AD and FC molecules are only partially embedded inside the CD cavity. The totally embedded complexes were found to have significantly higher energies. The semiempirical method, ZINDO, was employed to investigate the effect of complexation on the first electronic excitation of CD anchored to a metal nano-particle. The computational results revealed that after complexation to FC, the transition intensity declines to about 25% of the original value, and after complexation with AD, the intensity drops almost 50%. The tighter binding and transition intensity of CD-AD qualitatively agrees with the experimental result that the addition of AD to a solution of CD and FC restores the fluorescence of CD that was quenched by the addition of FC. A method to evaluate the “hydrophobic force” effect is proposed for future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low temperature water-gas shift (WGS) reaction has been studied over two commercial multiwall carbon nanotubes-supported nickel catalysts promoted by ceria. For comparison purposes, activated carbon-supported catalysts have also been studied. The catalytic performance and the characterization by N2 adsorption analysis, powder X-ray diffraction (XRD), temperature-programmed reduction with H2 (TPR-H2), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis showed that the surface chemistry has an important effect on the dispersion of ceria. As a result, ceria was successfully dispersed over the carbon nanotubes (CNTs) with less graphitic character, and the catalyst afforded better activity in WGS than the catalyst prepared over massive ceria. Moreover, a 20 wt.% CeO2 loading over this support was more active than the analogous catalyst with a 40 wt.% loading. The ceria nanoparticles were smaller when the support was previously oxidized, however this resulted in a decrease of the activity.