996 resultados para Planting density


Relevância:

100.00% 100.00%

Publicador:

Resumo:

'Goldfinger', a tetraploid banana produced from the Fundación Hondureña de Investigación Agrícola (FHIA) breeding program, was released to the Australian industry in 1995. It was promoted as an apple-flavoured dessert banana with resistance to Fusarium wilt race 1 and subtropical race 4, as well as resistance to black and yellow Sigatoka (Mycosphaerella fijiensis and M. musicola, respectively). This study was initiated to provide agronomic information to the banana industry, which was under threat from Fusarium wilt, on a new cultivar which could replace 'Williams' (AAA, Cavendish subgroup) or 'Lady Finger' (AAB, Pome subgroup) in those areas affected by Fusarium wilt. Also few studies had reported on the production characteristics of the new tetraploid hybrids, especially from subtropical areas, and therefore two field sites, one a steep-land farm and the other a level, more productive site, were selected for planting density and spatial arrangement treatments. The optimum density in terms of commercial production, taking into account bunch weight, finger size, length of the production cycle, plant height and ease of management, was 1680 plants/ha on the steep-land site where plants were planted in single rows with 2.5 m × 2.5 m spacings. However on the level site a double-row triangular layout with inter-row distances of 4.5 m to allow vehicular access (1724 plants/ha) gave the best results. With this arrangement plants were in an alternate, triangular arrangement along a row and a spacing of 1.5 m between plants at the points of each triangle and between each block of triangles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been reported that high-density planting of sugarcane can improve cane and sugar yield through promoting rapid canopy closure and increasing radiation interception earlier in crop growth. It is widely known that the control of adverse soil biota through fumigation (removes soil biological constraints and improves soil health) can improve cane and sugar yield. Whether the responses to high-density planting and improved soil health are additive or interactive has important implications for the sugarcane production system. Field experiments established at Bundaberg and Mackay, Queensland, Australia, involved all combinations of 2-row spacings (0.5 and 1.5 m), two planting densities (27 000 and 81 000 two-eyed setts/ha), and two soil fumigation treatments (fumigated and non-fumigated). The Bundaberg experiment had two cultivars (Q124, Q155), was fully irrigated, and harvested 15 months after planting. The Mackay experiment had one cultivar (Q117), was grown under rainfed conditions, and harvested 10 months after planting. High-density planting (81 000 setts/ha in 0.5-m rows) did not produce any more cane or sugar yield at harvest than low-density planting (27 000 setts/ha in 1.5-m rows) regardless of location, crop duration (15 v. 10 months), water supply (irrigated v. rainfed), or soil health (fumigated v. non-fumigated). Conversely, soil fumigation generally increased cane and sugar yields regardless of site, row spacing, and planting density. In the Bundaberg experiment there was a large fumigation x cultivar x density interaction (P<0.01). Cultivar Q155 responded positively to higher planting density in non-fumigated soil but not in fumigated soil, while Q124 showed a negative response to higher planting density in non-fumigated soil but no response in fumigated soil. In the Mackay experiment, Q117 showed a non-significant trend of increasing yield in response to increasing planting density in non-fumigated soil, similar to the Q155 response in non-fumigated soil at Bundaberg. The similarity in yield across the range of row spacings and planting densities within experiments was largely due to compensation between stalk number and stalk weight, particularly when fumigation was used to address soil health. Further, the different cultivars (Q124 and Q155 at Bundaberg and Q117 at Mackay) exhibited differing physiological responses to the fumigation, row spacing, and planting density treatments. These included the rate of tiller initiation and subsequent loss, changes in stalk weight, and propensity to lodging. These responses suggest that there may be potential for selecting cultivars suited to different planting configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The promotion of controlled traffic (matching wheel and row spacing) in the Australian sugar industry is necessitating a widening of row spacing beyond the standard 1.5 m. As all cultivars grown in the Australian industry have been selected under the standard row spacing there are concerns that at least some cultivars may not be suitable for wider rows. To address this issue, experiments were established in northern and southern Queensland in which cultivars, with different growth characteristics, recommended for each region, were grown under a range of different row configurations. In the northern Queensland experiment at Gordonvale, cultivars Q187((sic)), Q200((sic)), Q201((sic)), and Q218((sic)) were grown in 1.5-m single rows, 1.8-m single rows, 1.8-m dual rows (50 cm between duals), and 2.3-m dual rows (80 cm between duals). In the southern Queensland experiment at Farnsfield, cvv. Q138, Q205((sic)), Q222((sic)) and Q188((sic)) were also grown in 1.5-m single rows, 1.8-m single rows, 1.8-m dual rows (50 cm between duals), while 1.8-m-wide throat planted single row and 2.0-m dual row (80 cm between duals) configurations were also included. There was no difference in yield between the different row configurations at Farnsfield but there was a significant row configuration x cultivar interaction at Gordonvale due to good yields in 1.8-m single and dual rows with Q201((sic)) and poor yields with Q200((sic)) at the same row spacings. There was no significant difference between the two cultivars in 1.5-m single and 2.3-m dual rows. The experiments once again demonstrated the compensatory capacity that exists in sugarcane to manipulate stalk number and individual stalk weight as a means of producing similar yields across a range of row configurations and planting densities. There was evidence of different growth patterns between cultivars in response to different row configurations (viz. propensity to tiller, susceptibility to lodging, ability to compensate between stalk number and stalk weight), suggesting that there may be genetic differences in response to row configuration. It is argued that there is a need to evaluate potential cultivars under a wider range of row configurations than the standard 1.5-m single rows. Cultivars that perform well in row configurations ranging from 1.8 to 2.0 m are essential if the adverse effects of soil compaction are to be managed through the adoption of controlled traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Controlled traffic (matching wheel and row spacing) is being promoted as a means to manage soil compaction in the Australian sugar industry. However, machinery limitations dictate that wider row spacings than the standard 1.5-m single row will need to be adopted to incorporate controlled traffic and many growers are reluctant to widen row spacing for fear of yield penalties. To address these concerns, contrasting row configuration and planting density combinations were investigated for their effect on cane and sugar yield in large-scale experiments in the Gordonvale, Tully, Ingham, Mackay, and Bingera (near Bundaberg) sugarcane-growing regions of Queensland, Australia. The results showed that sugarcane possesses a capacity to compensate for different row configurations and planting densities through variation in stalk number and individual stalk weight. Row configurations ranging from 1.5-m single rows (the current industry standard) to 1.8-m dual rows (50 cm between duals), 2.1-m dual (80 cm between duals) and triple ( 65 cm between triples) rows, and 2.3-m triple rows (65 cm between triples) produced similar yields. Four rows (50 cm apart) on a 2.1-m configuration (quad rows) produced lower yields largely due to crop lodging, while a 1.8-m single row configuration produced lower yields in the plant crop, probably due to inadequate resource availability (water stress/limited radiation interception). The results suggest that controlled traffic can be adopted in the Australian sugar industry by changing from a 1.5-m single row to 1.8-m dual row configuration without yield penalty. Further, the similar yields obtained with wider row configurations (2 m or greater with multiple rows) in these experiments emphasise the physiological and environmental plasticity that exists in sugarcane. Controlled traffic can be implemented with these wider row configurations (>2 m), although it will be necessary to carry out expensive modifications to the current harvester and haul-out equipment. There were indications from this research that not all cultivars were suited to configurations involving multiple rows. The results suggest that consideration be given to assessing clones with different growth habits under a range of row configurations to find the most suitable plant types for controlled traffic cropping systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current understanding is that high planting density has the potential to suppress weeds and crop-weed interactions can be exploited by adjusting fertilizer rates. We hypothesized that (a) high planting density can be used to suppress Rottboellia cochinchinensis growth and (b) rice competitiveness against this weed can be enhanced by increasing nitrogen (N) rates. We tested these hypotheses by growing R. cochinchinensis alone and in competition with four rice planting densities (0, 100, 200, and 400 plants m-2) at four N rates (0, 50, 100, and 150 kg ha-1). At 56 days after sowing (DAS), R. cochinchinensis plant height decreased by 27-50 %, tiller number by 55-76 %, leaf number by 68-84 %, leaf area by 70-83 %, leaf biomass by 26-90 %, and inflorescence biomass by 60-84 %, with rice densities ranging from 100 to 400 plants m-2. All these parameters increased with an increase in N rate. Without the addition of N, R. cochinchinensis plants were 174 % taller than rice; whereas, with added N, they were 233 % taller. Added N favored more weed biomass production relative to rice. R. cochinchinensis grew taller than rice (at all N rates) to avoid shade, which suggests that it is a "shade-avoiding" plant. R. cochinchinensis showed this ability to reduce the effect of rice interference through increased leaf weight ratio, specific stem length, and decreased root-shoot weight ratio. This weed is more responsive to N fertilizer than rice. Therefore, farmers should give special consideration to the application timing of N fertilizer when more N-responsive weeds are present in their field. Results suggest that the growth and seed production of R. cochinchinensis can be decreased considerably by increasing rice density to 400 plants m-2. There is a need to integrate different weed control measures to achieve complete control of this noxious weed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyperus iria is a weed of rice with widespread occurrence throughout the world. Because of concerns about excessive and injudicious use of herbicides, cultural weed management approaches that are safe and economical are needed. Developing such approaches will require a better understanding of weed biology and ecology, as well as of weed response to increases in crop density and nutrition. Knowledge of the effects of nitrogen (N) fertilizer on crop-weed competitive interactions could also help in the development of integrated weed management strategies. The present study was conducted in a screenhouse to determine the effects of rice planting density (0, 5, 10, and 20 plants pot−1) and N rate (0, 50, 100, and 150 kg ha−1) on the growth of C. iria. Tiller number per plant decreased by 73–88%, leaf number by 85–94%, leaf area by 85–98%, leaf biomass by 92–99%, and inflorescence biomass by 96–99% when weed plants were grown at 20 rice plants pot−1 (i.e., 400 plants m−2) compared with weed plants grown alone. All of these parameters increased when N rates were increased. On average, weed biomass increased by 118–389% and rice biomass by 121–275% with application of 50–150 kg N ha−1, compared to control. Addition of N favored weed biomass production relative to rice biomass. Increased N rates reduced the root-to-shoot weight ratio of C. iria. Rice interference reduced weed growth and biomass and completely suppressed C. iria when no N was applied at high planting densities (i.e., 20 plants pot−1). The weed showed phenotypic plasticity in response to N application, and the addition of N increased the competitive ability of the weed over rice at densities of 5 and 10 rice plants pot−1 compared with 20 plants pot−1. The results of the present study suggest that high rice density (i.e., 400 plants m−2) can help suppress C. iria growth even at high N rates (150 kg ha−1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models are important tools to assess the scope of management effects on crop productivity under different climatic and soil regimes. Accordingly, this study developed and used a simple model to assess the effects of nitrogen fertiliser and planting density on the water use efficiency (q) of maize in semi-arid Kenya. Field experiments were undertaken at Sonning, Berkshire, UK, in 1996 (one sowing) and 1997 (two sowings). The results from the field experiments plus soil and weather data for Machakos, Kenya (1 degree 33'S, 37 degree 14'E and 1560 m above sea level), were then used to predict the effects that N application and planting density may have on water use by a maize crop grown in semi-arid Kenya. The increase in q due to N application was greater under irrigated (15%-19%) than rainfed (7%-8%) conditions. Also, high planting density increased q (by 13%) under irrigation but decreased q (by 17%) under rainfed conditions. The current study has shown the significance of crop modelling techniques in assessing the influence of N and planting density on maize production in one region of semi-arid Kenya where there is high variability of rainfall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between food security and sustainable land use is considered to be of the uttermost importance to increase yields without having to increase the agricultural land area over which crops are grown. In the present study nitrogen concentration (25 and 85 kg ha-1) and planting density (6.7, 10 and 25 plants m-2) were investigated for their effect on whole plant physiology and pod seed yield in kale (Brassica oleracea), to determine if the fruit (pod) yield could be manipulated agronomically. Nitrogen concentration did not significantly affect seed yield and it is therefore recommended that the lower concentration be used commercially. Conversely planting density did have a significant effect with increases in seed yield observed at the highest planting density of 25 plants m-2, therefore this high planting density would be recommended commercially to maximise area efficiency, highlighting that simple agronomic changes are capable of increasing crop yields over a set area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light and water are among essential resources required for production of photosynthates in plants. A study on the effects of weeding regimes and maize planting density on light and water use was conducted during the 2001/2 short and 2002 long rain seasons at Muguga in - the central highlands of Kenya. Weeding regimes were: weed free (W1), weedy (W2), herbicide (W3) and hand weeding twice (W4). Maize planting densities were 9 (D1) and 18 plants m-2 (D2) intercropped with Phaseolus vulgaris (beans). The experiment was laid as randomized complete block design replicated four times and repeated twice. All plots were thinned to 4 plants m-2 at tasseling stage (96 DAE) and thinnings quantified as forage. Soil moisture content (SMC), photosynthetically active radiation (PAR) interception, evapo-transpiration (ET crop), water use efficiency (WUE), and harvest index (HI), were determined. Percent PAR was higher in D2 than in D1 before thinning but higher in D1 than in D2 after thinning in both seasons. PAR interception was highest in W2 but similar in W1, W3 and W4 in both seasons. SMC was significantly lower in W2 but similar in W1, W3 and W4. D2 had lower SMC than D1 in season two. Weeding regime significantly influenced ET crop, while planting density and weeding regime significantly influenced WUE and HI. D2 maximizes water and light use for forage production but results to increased intra-specific plant competition for water and light severely before thinning (96 DAE) that reduce grain yield in dual purpose maize, relative to D1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interactions of two fungal biocontrol agents, Alternaria cassiae and Pseudocercospora nigricans, and soybean planting density on sicklepod mortality and dry weight were studied in the field over 2 yr. The experimental field was divided into three equal areas: one without soybean and two where the soybean was sown in densities of 20 and 36 seeds per meter row with a 0.95-m row spacing. The fungi were sprayed alone or in a mixture at three growth stages of sicklepod plants grown at three levels of crop interference resulting from the three soybean planting densities. The fungal treatments were: an untreated control, A. cassiae (105 spores/m2), P. nigricans (3.3 g mycelium/m2), and the mixture of these two fungi. Sicklepod was at the cotyledonary leaf, two-leaf, and four-leaf stages when treated. Alternaria cassiae was most effective in reducing both sicklepod survival and dry weight. The mixture of P. nigricans and A. cassiae was generally comparable to but not better than A. cassiae alone in killing the weed (mortality) and reducing its growth (dry weight). Soybean density did not have significant effects on the mortality or the dry weight of sicklepod. Thus, there is no advantage to combining the highly effective biocontrol agent A. cassiae with the less effective P. nigricans or with soybean interference to control sicklepod. However, the results validate the efficacy of A. cassiae by itself as a bioherbicide.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Trees in plantations established for timber production are usually grown at a sufficiently high density that canopy closure occurs within a relatively short time after planting. The trees then shade and outcompete most herbs, shrubs or grasses growing at the site. The closer the spacing (i.e. the greater the density) the faster this will occur. Subsequently, as the trees grow larger, this between-species competition is replaced by within-species competition. If unmanaged, this competition can reduce the commercial productivity of the plantation. Thus, there are two management dilemmas. One is knowing the best initial planting density. The second is knowing how to management the subsequent between-tree competition in order to optimize overall plantation timber productivity. In this chapter we consider initial spacing and thinning for high value timber trees grown in single and mixed species plantations. From growth studies in stands of different ages recommendations are proposed for managing both types of plantations where the primary objective is timber production. It seems that many rainforest species will require more space to achieve optimal growth than most eucalypts and conifers. On the other hand many rainforest species do not have strong apical dominance. Care will be needed to balance these two attributes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Climate variations over the year and plant density tend to strongly affect the agronomic performance of carrot crops. Thus, the objective of this work was to evaluate the performance of the cultivar Brasilia in crops under mild (winter) and high (summer) temperatures. An experiment was conducted from May 2011 to February 2012, using a randomized block design and treatments arranged in split plot, with three replications. The plots consisted of planting seasons (winter and summer) and the subplots of plant spacing (4, 6, 8 and 10 cm). The height of plants presented a linear decrease, from 53.4 to 51.0 cm, with an increase in spacing in summer planting, while in winter the greatest height (50.7 cm) was obtained with spacing of 8.0 cm between plants. The lowest commercial yields were found in summer crops and with the widest spacing between plants. The smallest spacing between plants (4 cm) had yields of 45.9 Mg ha -1in summer and of 63.1 Mg ha-1 in winter crops. The winter planting had higher fresh root weight (89.9 g root - 1 ) compared to the summer (81.4 g root - 1 ), reaching higher weight with increasing plant spacing. Higher yields are achieved with plant spacing of 4 cm during winter. The carrot can be grown throughout the year in the Submiddle of the São Francisco Valley.