981 resultados para Planta de potência vapor
Resumo:
A disponibilidade de recursos energéticos em um país impacta diretamente no seu desenvolvimento sócio-econômico. Com a elevação dos preços dos energéticos no Brasil, a eficientização do uso de energia tornar-se uma atividade estratégica para o setor industrial. Com esse intuito as avaliações energéticas empregadas nesse setor objetivam otimizar a eficiência dos seus sistemas térmicos. Essas avaliações de desempenho energético são baseadas na Primeira Lei da Termodinâmica e são capazes de identificar apenas as perdas de energia, diferente da avaliação exergética que permite qualificar essa energia perdida. Devido a essa análise de qualificação da energia ser sofisticada e demorada, tornar-se necessário desenvolver um protocolo que seja executado de forma rápida e que contemple as particularidades da Amazônia, tanto o clima quanto a sua biomassa. Para isto, este trabalho propõe e aplica uma metodologia através do emprego de análises energéticas, exergética e exergo-econômica em uma planta de potência a vapor instalada no Estado Pará e operando com ciclo Rankine. Com aplicação dessas avaliações obtêm-se as taxas de energia e de perdas de energia, as taxas de exergia, as taxas de destruição de exergia, as taxas de custo de cada produto e o custo monetário da capacidade energética produzida pela planta em R$/kWh. Com esses resultados foi possível identificar as maiores perdas energéticas da planta, quantificar o custo da destruição de exergia nos principais equipamentos e a taxa de custo dos produtos principais da planta que são energia térmica e energia elétrica. Isto permite visualizar o desempenho energético, exergético e econômico em cada equipamento da planta e indicar os processos que merecem um trabalho de desenvolvimento para melhorar a sua eficiência econômica. Além disso, o custo da capacidade energética em R$/kWh produzida pela planta a vapor foi comparado com o valor cobrado pela concessionária de energia local. Essa comparação mostrou que central geradora de energia tem um custo de energia menor do que o valor confrontado.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este trabalho tem o objetivo de realizar uma análise de sensibilidade dos parâmetros operacionais e de projeto de uma usina termelétrica. A análise de sensibilidade serve para indicar qual a importância dessas grandezas no resultado do sistema. A planta modelada é a da Usina Termelétrica Presidente Médici – Fase B, localizada em Candiota, RS, onde cada módulo é capaz de produzir até 160 MW de potência. Para esta planta é apresentado o equacionamento de cada componente do sistema. Destacam-se duas modelagens para a turbina a vapor, usadas para a simulação de seu comportamento em carga parcial, o da Elipse de Stodola e o de Schegliáiev. Ambos os modelos são comparados. Também são apresentados os modos de controle de carga por válvula de estrangulamento, por válvula de bocais e por pressão deslizante. A análise de sensibilidade é feita por meio de três métodos distintos, cujos resultados são comparados. O Método Diferencial utiliza as derivadas parciais para estimar a sensibilidade. O Método de Monte Carlo realiza uma série de avaliações do sistema, com os dados de entrada gerados randomicamente em cada avaliação e análise estatística dos resultados para avaliar a sensibilidade das respostas. É desenvolvido neste trabalho o Método da Transformada de Fourier, que gera os dados de forma senoidal e utiliza a transformada de Fourier para medir as sensibilidades. A medida da sensibilidade é feita através de dois índices. O índice de importância é a derivada parcial de um resultado em relação a um parâmetro, adimensionalizado pelas médias das variáveis, e o índice de sensibilidade é a composição fracional da variância de um resultado. Como conclusão, observa-se que os modelos para operação em carga parcial da turbina de Schegliáiev e de Stodola produzem praticamente os mesmos resultados. Os três métodos de análise de sensibilidade conduzem aos mesmos índices de sensibilidade no caso estudado. A ordenação da importância dos parâmetros estudados é idêntica quando se usa tanto o índice de importância quanto o de sensibilidade, mesmo seus valores sejam diferentes para cada parâmetros.
Resumo:
[ES]La empresa de ingeniería SENER Ingeniería y sistemas S.A. tiene una larga experiencia en el desarrollo, diseño y construcción de plantas de cogeneración. La aplicación del análisis exergético a las plantas permite optimizar la eficiencia y reducir los costes. Este método basado en la exergía analiza si los recursos se utilizan de forma eficiente y proporciona las herramientas necesarias para mejorar su utilización. Este trabajo realiza dicho análisis exergético para posteriormente analizar los resultados y proponer mejoras para aumentar la eficiencia de la planta.
Resumo:
UANL
Resumo:
Brazil is nowadays the greatest bet of investors for the future due to its stable economy growth. The country has grown side by side with the greatest demand for electrical energy. The international appeal for renewable sources is causing a change in the Brazilian energetic matrix, raising the amount of energy generated by thermoelectric power plants. The construction of new power plants, running on biomass, requires a crescent number of capacitated personnel to run them. The Faculdade de Engenharia de Guaratinguetá – UNESP – has a steam laboratory; witch is deactivated, which has a thermoelectric plant of small capacity. The laboratory reactivation and the return of its activities can be an important tool in order to graduate engineer able to operate on such units. This paper proposes four new experiments to be simulated on the Collage’s Energy Dep. Steam Lab when it gets back to its educational activities
Resumo:
This study focused object a steam generation system, steam distribution and condensate return a textile plant located in Rio Grande do Norte. The work was based on the following objectives: Knowing the use of saturated water vapor in the dyeing and finishing processes in a textile plant; To study the various aspects of a steam distribution system to identify the ways in which energy losses occur; Obtain quantitative information of the main loss in steam generation system and steam distribution and to measure the losses, water and steam system; Using the flash steam as a means of cost reduction. For it was made use of the calculation of financial gains made in their respective improvements. As a database for the development of working registers are used in industrial processes, data from utility systems, laboratory data analysis and on-line analyzers, covering the period 2013. Using the principles set conservation laws mass and energy, those data showed that the loss of water and energy in the steam system are significant and that the environmental and economic gains to be obtained with improvement actions are quite significant. Based on the data and results suggest that future studies deem the continuity approach to steam generation systems, distribution and mainly condensate return.
Resumo:
[ES]El objetivo de este Trabajo Fin de Grado consiste en estudiar el proceso desarrollado en la planta de incineración de residuos sólidos urbanos de Zabalgarbi (Bizkaia). La planta consiste en un ciclo combinado basado en una turbina de gas de 43 MW y una turbina de vapor de 56,5 MW. La importancia de su diseño recae en la adaptación de la tecnología de ciclo combinado de gas a la tecnología propia de una planta de valorización energética de residuos municipales. Es decir, se trata de un diseño innovador, del que surge un nuevo proceso industrial que permite dar solución a la problemática generada por los residuos producidos a la vez que se genera energía eléctrica. Gracias a este diseño, se consigue una mejora cualitativa y cuantitativa del rendimiento de la planta, ya que se obtiene energía eléctrica en dos etapas, además de un mejor aprovechamiento de los recursos. La tecnología utilizada para la incineración es el horno-caldera de parrilla deslizante. En este trabajo se analizarán los procesos integrados en la planta y se realizará el estudio energético de los equipos más significativos. Una vez realizada esta parte, se considerarán ciertas mejoras a incorporar en la instalación. Además, se desarrollará la metodología seguida para la realización del estudio así como la planificación y el presupuesto.
Resumo:
Em 2006, a IEA (Agência Internacional de Energia), publicou alguns estudos de consumos mundiais de energia. Naquela altura, apontava na fabricação de produtos, um consumo mundial de energia elétrica, de origem fóssil de cerca 86,16 EJ/ano (86,16×018 J) e um consumo de energia nos sistemas de vapor de 32,75 EJ/ano. Evidenciou também nesses estudos que o potencial de poupança de energia nos sistemas de vapor era de 3,27 EJ/ano. Ou seja, quase tanto como a energia consumida nos sistemas de vapor da U.E. Não se encontraram números relativamente a Portugal, mas comparativamente com outros Países publicitados com alguma similaridade, o consumo de energia em vapor rondará 0,2 EJ/ano e por conseguinte um potencial de poupança de cerca 0,02 EJ/ano, ou 5,6 × 106 MWh/ano ou uma potência de 646 MW, mais do que a potência de cinco barragens Crestuma/Lever! Trata-se efetivamente de muita energia; interessa por isso perceber o onde e o porquê deste desperdício. De um modo muito modesto, pretende-se com este trabalho dar algum contributo neste sentido. Procurou-se evidenciar as possibilidades reais de os utilizadores de vapor de água na indústria reduzirem os consumos de energia associados à sua produção. Não estão em causa as diferentes formas de energia para a geração de vapor, sejam de origem fóssil ou renovável; interessou neste trabalho estudar o modo de como é manuseado o vapor na sua função de transporte de energia térmica, e de como este poderá ser melhorado na sua eficiência de cedência de calor, idealmente com menor consumo de energia. Com efeito, de que servirá se se optou por substituir o tipo de queima para uma mais sustentável se a jusante se continuarem a verificarem desperdícios, descarga exagerada nas purgas das caldeiras com perda de calor associada, emissões permanentes de vapor para a atmosfera em tanques de condensado, perdas por válvulas nos vedantes, purgadores avariados abertos, pressão de vapor exageradamente alta atendendo às temperaturas necessárias, “layouts” do sistema de distribuição mal desenhados, inexistência de registos de produção e consumos de vapor, etc. A base de organização deste estudo foi o ciclo de vapor: produção, distribuição, consumo e recuperação de condensado. Pareceu importante incluir também o tratamento de água, atendendo às implicações na transferência de calor das superfícies com incrustações. Na produção de vapor, verifica-se que os maiores problemas de perda de energia têm a ver com a falta de controlo, no excesso de ar e purgas das caldeiras em exagero. Na distribuição de vapor aborda-se o dimensionamento das tubagens, necessidade de purgas a v montante das válvulas de controlo, a redução de pressão com válvulas redutoras tradicionais; será de destacar a experiência americana no uso de micro turbinas para a redução de pressão com produção simultânea de eletricidade. Em Portugal não se conhecem instalações com esta opção. Fabricantes da República Checa e Áustria, têm tido sucesso em algumas dezenas de instalações de redução de pressão em diversos países europeus (UK, Alemanha, R. Checa, França, etc.). Para determinação de consumos de vapor, para projeto ou mesmo para estimativa em máquinas existentes, disponibiliza-se uma série de equações para os casos mais comuns. Dá-se especial relevo ao problema que se verifica numa grande percentagem de permutadores de calor, que é a estagnação de condensado - “stalled conditions”. Tenta-se também evidenciar as vantagens da recuperação de vapor de flash (infelizmente de pouca tradição em Portugal), e a aplicação de termocompressores. Finalmente aborda-se o benchmarking e monitorização, quer dos custos de vapor quer dos consumos específicos dos produtos. Esta abordagem é algo ligeira, por manifesta falta de estudos publicados. Como trabalhos práticos, foram efetuados levantamentos a instalações de vapor em diversos sectores de atividades; 1. ISEP - Laboratório de Química. Porto, 2. Prio Energy - Fábrica de Biocombustíveis. Porto de Aveiro. 3. Inapal Plásticos. Componentes de Automóvel. Leça do Balio, 4. Malhas Sonix. Tinturaria Têxtil. Barcelos, 5. Uma instalação de cartão canelado e uma instalação de alimentos derivados de soja. Também se inclui um estudo comparativo de custos de vapor usado nos hospitais: quando produzido por geradores de vapor com queima de combustível e quando é produzido por pequenos geradores elétricos. Os resultados estão resumidos em tabelas e conclui-se que se o potencial de poupança se aproxima do referido no início deste trabalho.
Resumo:
O presente trabalho é dedicado à simulação numérica de sistemas térmicos de potência. O trabalho é iniciado com a modelagem de um ciclo Rankine, dedicado à produção de energia elétrica, para o qual foi elaborado um programa de simulação com a linguagem de programação MATLAB. A partir desse primeiro caso, são apresentados os modelos empregados para representar os diversos componentes que formam o circuito, como o gerador de vapor, a turbina, o condensador e a bomba. Além desses componentes, são introduzidas as equações que representam o escoamento do fluido de trabalho, no caso a água, permitindo assim o cálculo da perda de carga nas diferentes canalizações do circuito, sendo também acoplado o funcionamento da bomba. Essa alternativa pennite uma melhor avaliação do trabalho despendido para operar o sistema. A modelagem do ciclo deixa então de ser exclusivamente tennodinâmica, e passa a incluir aspectos de mecânica de fluidos. Outras variantes desse ciclo simples são também modelados e simulados, incluindo ciclos Rankine regenerativos e com irreversibilidades. As simulações são efetuadas admitindo-se parâmetros de operação, como, potência da turbina, temperatura do vapor d'água na entrada da turbina e pressão do vapor d'água na saída da turbina, com a variante de fixar-se o título do vapor d'água na saída da turbina.
Resumo:
Este trabalho tem por objetivo simular e analisar uma usina termelétrica a carvão em várias condições de funcionamento. A usina simulada neste trabalho é a AVV 1 localizada em Copenhague, Dinamarca. A AVV 1 é uma usina de geração de potência e aquecimento distrital que pode funcionar em várias condições de carga. A simulação da usina supracitada foi tema de um concurso de simuladores proposto no congresso ECOS 2003 realizado em Copenhague, Dinamarca. Para a realização deste trabalho foi construído um programa na linguagem FORTRAN 90. Cada componente da usina é modelado através de equações de balanço de massa e energia, e o sistema completo tem sua solução obtida pelo método de substituição sucessiva. Para viabilizar essa solução é necessário também implementar uma rotina de cálculo de propriedades do fluido de trabalho. No caso estudado, o fluido de trabalho da usina é a água e a formulação utilizada para o cálculo de suas propriedades nos diversos estados é a IAPWS IF-97. A usina é simulada em dois modos de operação: modo de condensação, onde ocorre apenas geração de eletricidade, e em modo de contrapressão, onde há geração de eletricidade e aquecimento distrital, conforme nomenclatura sugerida pela organização do concurso No modo de condensação, são feitas quatro séries de simulações variando a carga de 100% a 40%. Cada série contém um conjunto de hipóteses quanto à variação das eficiências isoentrópicas e pressões das turbinas em função da vazão mássica. No modo de contrapressão, a usina é simulada funcionando com 100% da carga. O programa desenvolvido calcula as propriedades para qualquer ponto de trabalho ao longo da planta, assim como a eficiência da mesma, a potência gerada, e todas as vazões mássicas pertinentes. Além disso, é feita também uma análise exergética da planta. A simulação demonstrou que a planta possui uma eficiência global de 42,02% com uma geração de 250,2 MW em 100% de carga no modo de condensação. Nessas mesmas condições, do ponto de vista exergético, a eficiência encontrada é de 37,21%. No modo de contrapressão, a usina apresenta uma eficiência exergética de 40,19% com um aproveitamento energético de 90,55%. Por fim, é possível também verificar a comportamento da eficiência da planta e a variação de água de resfriamento do condensador com a carga. Os resultados gerados são próximos àqueles encontrados pelos diversos pesquisadores que abordaram o problema.
Resumo:
Ionic oxides with ABO3 structure, where A represents a rare earth element or an alkaline metal and B is a transition metal from group VIII of the periodic table are potential catalysts for oxidation and good candidates for steam reforming reaction. Different methods have been considered for the synthesis of the oxide materials with perovskite structure to produce a high homogeneous material with low amount of impurities and low calcination temperatures. In the current work, oxides with the LaNiO3 formula had been synthesized using the method of the polymeric precursors. The thermal treatment of the materials took place at 300 ºC for 2h. The material supported in alumina and/or zirconia was calcined at 800 ºC temperature for 4h. The samples had been characterized by the following techniques: thermogravimetry; infrared spectroscopy; X-ray diffraction; specific surface area; distribution of particle size; scanning electron microscopy and thermo-programmed reduction. The steam reforming reaction was carried out in a pilot plant using reducing atmosphere in the reactor with a mixture of 10% H2-Argon, a mass about 5g of catalyst, flowing at 50 mL.min-1. The temperature range used was 50 - 1000 oC with a heating rate of 10 oC.min-1. A thermal conductivity detector was used to analyze the gas after the water trapping, in order to permit to quantify the consumption of hydrogen for the lanthanum nickelates (LaNiO3). The results showed that lanthanum nickelate were more efficient when supported in alumina than when supported in zirconia. It was observed that the methane conversion was approximately 100% and the selectivity to hydrogen was about 70%. In all cases were verified low selectivity to CO and CO2
Resumo:
This work discusses the design of a transformer used in a plant plasma. This plant, which is being developed in UFRN, will be used in the treatment of waste. It consists basically of a radio frequency power supply and a inductive plasma torch. The transformer operates at the nominal frequency of 400 kHz, with 50 kW, allowing the adaptation of impedance between the power supply and torch. To develop the project, a study was done on the fabrication technologies and physical effects on the frequency of operation. This was followed by the modeling of this transformer. Finally, simulations and tests were conducted to validate the design
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)