991 resultados para Plant-populations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Size distributions in woody plant populations have been used to assess their regeneration status, assuming that size structures with reverse-J shapes represent stable populations. We present an empirical approach of this issue using five woody species from the Cerrado. Considering count data for all plants of these five species over a 12-year period, we analyzed size distribution by: a) plotting frequency distributions and their adjustment to the negative exponential curve and b) calculating the Gini coefficient. To look for a relationship between size structure and future trends, we considered the size structures from the first census year. We analyzed changes in number over time and performed a simple population viability analysis, which gives the mean population growth rate, its variance and the probability of extinction in a given time period. Frequency distributions and the Gini coefficient were not able to predict future trends in population numbers. We recommend that managers should not use measures of size structure as a basis for management decisions without applying more appropriate demographic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY: Research into the evolution of subdivided plant populations has long involved the study of phenotypic variation across plant geographic ranges and the genetic details underlying that variation. Genetic polymorphism at different marker loci has also allowed us to infer the long- and short-term histories of gene flow within and among populations, including range expansions and colonization-extinction dynamics. However, the advent of affordable genome-wide sequences for large numbers of individuals is opening up new possibilities for the study of subdivided populations. In this review, we consider what the new tools and technologies may allow us to do. In particular, we encourage researchers to look beyond the description of variation and to use genomic tools to address new hypotheses, or old ones afresh. Because subdivided plant populations are complex structures, we caution researchers away from adopting simplistic interpretations of their data, and to consider the patterns they observe in terms of the population genetic processes that have given rise to them; here, the genealogical framework of the coalescent will continue to be conceptually and analytically useful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the agronomic traits and the popping expansion index of three Brazilian popcorn cultivars under different row spacings and plant populations. The trials were performed during two crop seasons, under field conditions. The experimental design used was a randomized complete block, in a split-split plot, with 27 treatments and four replicates. Treatments were represented in a triple factorial arrangement: three row spacings (0.40, 0.60, and 0.80 m), three plant populations (40,000, 60,000, and 80,000 plants per hectare), and three popcorn cultivars (IAC-TC 01, IAC 12, and Zelia). The increase in plant population causes a reduction in the number of grains per ear, lower prolificacy, and grain weight loss. Cultivar grain yield is affected by row spacing and popcorn plant population. Cultivar IAC 12 shows highest grain yield under row spacings of 0.40 and 0.60 m and plant population between 60,000 and 80,000 plants per hectare. The popping expansion index is not affected by row spacing or plant population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the agronomic traits and the popping expansion index of three Brazilian popcorn cultivars under different row spacings and plant populations. The trials were performed during two crop seasons, under field conditions. The experimental design used was a randomized complete block, in a split-split plot, with 27 treatments and four replicates. Treatments were represented in a triple factorial arrangement: three row spacings (0.40, 0.60, and 0.80 m), three plant populations (40,000, 60,000, and 80,000 plants per hectare), and three popcorn cultivars (IAC-TC 01, IAC 12, and Zelia). The increase in plant population causes a reduction in the number of grains per ear, lower prolificacy, and grain weight loss. Cultivar grain yield is affected by row spacing and popcorn plant population. Cultivar IAC 12 shows highest grain yield under row spacings of 0.40 and 0.60 m and plant population between 60,000 and 80,000 plants per hectare. The popping expansion index is not affected by row spacing or plant population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims The effect Of anthropogenic landscape fragmentation on the genetic diversity and adaptive potential of plant populations is a major issue in conservation biology. However, little is known about the partitioning of genetic diversity in alpine species, which occur in naturally fragmented habitats. Here, we, investigate molecular patterns of three alpine plants (Epilobium fleischeri, Geum reptans and Campanula thyrsoides) across Switzerland and ask whether Spatial isolation has led to high levels of populations differentiation, increasing over distance, and a decrease of within-population variability. We further hypothesize that file contrasting potential for long-distance dispersal (LDD) of Seed in these Species will considerably influence and explain diversity partitioning. Methods For each study species, we Sampled 20-23 individuals from each of 20-32 populations across entire Switzerland. We applied Random Amplified Polymorphic Dimorphism markers to assess genetic diversity within (Nei's expected heterozygosity, H-e; percentage of polymorphic hands, P-P) and among (analysis of molecular variance, Phi(st)) populations and correlated population size and altitude with within-populalion diversity. Spatial patterns of genetic relatedness were investigated using Mantel tests and standardized major axis regression as well as unweighted pair group method with arithmetic mean cluster analyses and Monmonier's algorithm. To avoid known biases, We standardized the numbers of populations, individuals and markers using multiple random reductions. We modelled LDD with a high alpine wind data set using the terminal velocity and height of seed release as key parameters. Additionally, we assessed a number of important life-history traits and factors that potentially influence genetic diversity partitioning (e.g. breeding system, longevity and population size). Important findings For all three species, We found a significant isolation-by-distance relationship but only a moderately high differentiation among populations (Phi(st): 22.7, 48 and 16.8%, for E. fleischeri, G. reptans and C. thyrsoides, respectively). Within-population diversity (H-c: 0.19-0.21, P-p: 62-75%) was not reduced in comparison to known results from lowland species and even small populations with < 50 reproductive individuals contained high levels of genetic diversity. We further found no indication that a high long-distance seed dispersal potential enhances genetic connectivity among populations. Gene flow seems to have a strong stochastic component causing large dissimilarity between population pairs irrespective of the spatial distance. Our results suggest that other life-history traits, especially the breeding System, may play an important role in genetic diversity partitioning. We conclude that spatial isolation in the alpine environment has a strong influence on population relatedness but that a number of factors can considerably influence the strength of this relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological diversity within species can be an important driver of population and ecosystem functioning. Until now, such within-species diversity effects have been attributed to underlying variation in DNA sequence. However, within-species differences, and thus potentially functional biodiversity, can also be created by epigenetic variation. Here, we show that epigenetic diversity increases the productivity and stability of plant populations. Epigenetically diverse populations of Arabidopsis thaliana produce up to 40% more biomass than epigenetically uniform populations. The positive epigenetic diversity effects are strongest when populations are grown together with competitors and infected with pathogens, and they seem to be partly driven by complementarity among epigenotypes. Our study has two implications: first, we may need to re-evaluate previous within-species diversity studies where some effects could reflect epigenetic diversity; second, we need to incorporate epigenetics into basic ecological research, by quantifying natural epigenetic diversity and testing for its ecological consequences across many different species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1 We used simulated and experimental plant populations to analyse mortality-driven pattern formation under size-dependent competition. Larger plants had an advantage under size-asymmetric but not under symmetric competition. Initial patterns were random or clumped. 2 The simulations were individual-based and spatially explicit. Size-dependent competition was modelled with different rules to partition overlapping zones of influence. 3 The experiment used genotypes of Arabidopsis thaliana with different morphological plasticity and hence size-dependent competition. Compared with wild types, transgenic individuals over-expressed phytochrome A and had decreased plasticity because of disabled phytochrome-mediated shade avoidance. Therefore, competition among transgenics was more asymmetric compared with wild-types. 4 Density-dependent mortality under symmetric competition did not substantially change the initial spatial pattern. Conversely, simulations under asymmetric competition and experimental patterns of transgenic over-expressors showed patterns of survivors that deviated substantially from random mortality independent of initial patterns. 5 Small-scale initial patterns of wild types were regular rather than random or clumped. We hypothesize that this small-scale regularity may be explained by early shade avoidance of seedlings in their cotyledon stage. 6 Our experimental results support predictions from an individual-based simulation model and support the conclusion that regular spatial patterns of surviving individuals should be interpreted as evidence for strong, asymmetric competitive interactions and subsequent density-dependent mortality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of size inequality in crowded plant populations are often taken to be indicative of the degree of size asymmetry of competition, but recent research suggests that some of the patterns attributed to size‐asymmetric competition could be due to spatial structure. To investigate the theoretical relationships between plant density, spatial pattern, and competitive size asymmetry in determining size variation in crowded plant populations, we developed a spatially explicit, individual‐based plant competition model based on overlapping zones of influence. The zone of influence of each plant is modeled as a circle, growing in two dimensions, and is allometrically related to plant biomass. The area of the circle represents resources potentially available to the plant, and plants compete for resources in areas in which they overlap. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. Theoretical plant populations were grown in random and in perfectly uniform spatial patterns at four densities under size‐asymmetric and size‐symmetric competition. Both spatial pattern and size asymmetry contributed to size variation, but their relative importance varied greatly over density and over time. Early in stand development, spatial pattern was more important than the symmetry of competition in determining the degree of size variation within the population, but after plants grew and competition intensified, the size asymmetry of competition became a much more important source of size variation. Size variability was slightly higher at higher densities when competition was symmetric and plants were distributed nonuniformly in space. In a uniform spatial pattern, size variation increased with density only when competition was size asymmetric. Our results suggest that when competition is size asymmetric and intense, it will be more important in generating size variation than is local variation in density. Our results and the available data are consistent with the hypothesis that high levels of size inequality commonly observed within crowded plant populations are largely due to size‐asymmetric competition, not to variation in local density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-d-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applications of foliar fungicides on soybeans have been shown to reduce disease pressure and protect yield under the right conditions, especially in environments that have very wet or humid conditions. In the past decade, fungicide use in Iowa has increased. Initially, growers were concerned with the potential threat of soybean rust, which is controlled effectively by foliar fungicides. In Iowa, however, there has not been any case of yield reduction due to soybean rust. New potential purposes for foliar fungicides include “plant health” benefits and the reduction of foliar diseases endemic in Iowa such as Septoria brown spot, Cercospora leaf blight, and frogeye leaf spot. Currently what is not known is how the efficacy of fungicides is affected when agricultural practices change. Our question: How does plant population affect the efficacy of fungicides?

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As a result of higher seed prices, improved planters and weed management programs, soybean growers are more aware of the importance of seeding rates and optimal plant populations at harvest. A harvest population of approximately 100,000 uniformly distributed plants per acre will maximize economic return in Iowa regardless of row spacing. There appears to be no economic advantage to harvest populations greater than, or less than, 100,000 plants per acre. Economics, however, should be considered carefully when striving for higher harvest populations since seed is expensive. Timely management, such as weed management, is more critical at low plant populations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As a result of higher seed prices, improved planters and weed management programs, soybean growers are more aware of the importance of seeding rates and optimal plant populations at harvest. A harvest population of approximately 100,000 uniformly distributed plants per acre will maximize economic return in Iowa regardless of row spacing. There appears to be no economic advantage to harvest populations greater than, or less than, 100,000 plants per acre. Economics, however, should be considered carefully when striving for higher harvest populations since seed is expensive. Timely management, such as weed management, is more critical at low plant populations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exploitation of arbuscular mycorrhizal fungi may be an important approach for development of reduced-input agriculture. We discuss the use of linear models to analyze variation in mycorrhiza response among diverse plant varieties in order to assess the value of mycorrhizas. Our approach allows elimination of variation linked to differences in plant performance in the absence of mycorrhizas and the selection of plant lines that might harbor genetic variation of use to improve the mycorrhizal symbiosis in agriculture. We illustrate our approach by applying it to previously published and to novel data. We suggest that in dealing with a relative trait such as mycorrhiza effect, the choice of measure used to quantify the trait greatly affects interpretation. In the plant populations under consideration, we find evidence for a greater potential to increase mycorrhiza benefit than previously suggested.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nitrogen supply and plant population are basic parameters for cereal-legume intercropping. In order to study plant population and nitrogen fertilizer effects on yield and yield efficiency of maize-bean intercropping, a field experiment was established. Three bean plant populations and three nitrogen levels were used. Maize dry matter accumulation decreased with increases in bean plant population. Competitive effect of intercrop beans on maize yields was high at higher plant populations, being decreased by nitrogen fertilizer; application of 50 kg ha-1 N was very efficient in increasing maize cob yield. Intercropping significantly decreased harvest index of beans in all plant population and nitrogen fertilizer situations. The efficiency of intercropping, compared to sole cropping, was evidenced by the values obtained for Land Equivalent Ratio (LER) for biomass, cob and pod yields that increased with increases in bean plant populations and nitrogen fertilizer levels.